On the Convergence of the Fourier Approximation for Eigenvalues and Eigenfunctions of Discontinuous Problems
In this paper, we consider a model eigenvalue problem with discontinuous coefficients in order to study the convergence of the Fourier methods applied to this problem. We prove that the rate of convergence of the Fourier-Galerkin method is third order for the eigenvalues and order 2.5 for the eigenf...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2003-01, Vol.40 (6), p.2254-2269 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider a model eigenvalue problem with discontinuous coefficients in order to study the convergence of the Fourier methods applied to this problem. We prove that the rate of convergence of the Fourier-Galerkin method is third order for the eigenvalues and order 2.5 for the eigenfunctions. For the Fourier collocation method we obtained only second order accuracy. We also show that the Fourier collocation method can be improved by a preprocessing of the coefficients. The theory is confirmed by numerical results. |
---|---|
ISSN: | 0036-1429 1095-7170 |