On the Convergence of the Fourier Approximation for Eigenvalues and Eigenfunctions of Discontinuous Problems

In this paper, we consider a model eigenvalue problem with discontinuous coefficients in order to study the convergence of the Fourier methods applied to this problem. We prove that the rate of convergence of the Fourier-Galerkin method is third order for the eigenvalues and order 2.5 for the eigenf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2003-01, Vol.40 (6), p.2254-2269
Hauptverfasser: M. S. Min, Gottlieb, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a model eigenvalue problem with discontinuous coefficients in order to study the convergence of the Fourier methods applied to this problem. We prove that the rate of convergence of the Fourier-Galerkin method is third order for the eigenvalues and order 2.5 for the eigenfunctions. For the Fourier collocation method we obtained only second order accuracy. We also show that the Fourier collocation method can be improved by a preprocessing of the coefficients. The theory is confirmed by numerical results.
ISSN:0036-1429
1095-7170