On the Diophantine Equation Gn(x)=Gm(P(x)): Higher-Order Recurrences

Let K be a field of characteristic 0 and let (Gn(x))n=0 ∞be a linear recurring sequence of degree din K[x] defined by the initial terms G0,... ,Gd-1∈ K[x] and by the difference equation$G_{n+d}(x)=A_{d-1}(x)G_{n+d-1}(x)+\cdots +A_{0}(x)G_{n}(x),\quad \text{for}n\geq 0$, with A0,... ,Ad-1∈ K[x]. Fina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2003-11, Vol.355 (11), p.4657-4681
Hauptverfasser: Fuchs, Clemens, Pethő, Attila, Tichy, Robert F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let K be a field of characteristic 0 and let (Gn(x))n=0 ∞be a linear recurring sequence of degree din K[x] defined by the initial terms G0,... ,Gd-1∈ K[x] and by the difference equation$G_{n+d}(x)=A_{d-1}(x)G_{n+d-1}(x)+\cdots +A_{0}(x)G_{n}(x),\quad \text{for}n\geq 0$, with A0,... ,Ad-1∈ K[x]. Finally, let P(x) be an element of K[x]. In this paper we are giving fairly general conditions depending only on G0,... ,Gd-1, on P, and on A0,... ,Ad-1under which the Diophantine equation Gn(x)=Gm(P(x)) has only finitely many solutions (n,m)∈ Z2,n,m≥ 0. Moreover, we are giving an upper bound for the number of solutions, which depends only on d. This paper is a continuation of the work of the authors on this equation in the case of second-order linear recurring sequences.
ISSN:0002-9947
1088-6850
DOI:10.1090/S0002-9947-03-03325-7