On the Diophantine Equation Gn(x)=Gm(P(x)): Higher-Order Recurrences
Let K be a field of characteristic 0 and let (Gn(x))n=0 ∞be a linear recurring sequence of degree din K[x] defined by the initial terms G0,... ,Gd-1∈ K[x] and by the difference equation$G_{n+d}(x)=A_{d-1}(x)G_{n+d-1}(x)+\cdots +A_{0}(x)G_{n}(x),\quad \text{for}n\geq 0$, with A0,... ,Ad-1∈ K[x]. Fina...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2003-11, Vol.355 (11), p.4657-4681 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let K be a field of characteristic 0 and let (Gn(x))n=0
∞be a linear recurring sequence of degree din K[x] defined by the initial terms G0,... ,Gd-1∈ K[x] and by the difference equation$G_{n+d}(x)=A_{d-1}(x)G_{n+d-1}(x)+\cdots +A_{0}(x)G_{n}(x),\quad \text{for}n\geq 0$, with A0,... ,Ad-1∈ K[x]. Finally, let P(x) be an element of K[x]. In this paper we are giving fairly general conditions depending only on G0,... ,Gd-1, on P, and on A0,... ,Ad-1under which the Diophantine equation Gn(x)=Gm(P(x)) has only finitely many solutions (n,m)∈ Z2,n,m≥ 0. Moreover, we are giving an upper bound for the number of solutions, which depends only on d. This paper is a continuation of the work of the authors on this equation in the case of second-order linear recurring sequences. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/S0002-9947-03-03325-7 |