Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model

Theory and experiments of single-mode ridge waveguide GaAs-AlGaAs semiconductor ring lasers are presented. The lasers are found to operate bidirectionally up to twice the threshold, where unidirectional operation starts. Bidirectional operation reveals that just above threshold, the lasers operate i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2003-10, Vol.39 (10), p.1187-1195
Hauptverfasser: Sorel, M., Giuliani, G., Scire, A., Miglierina, R., Donati, S., Laybourn, P.J.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Theory and experiments of single-mode ridge waveguide GaAs-AlGaAs semiconductor ring lasers are presented. The lasers are found to operate bidirectionally up to twice the threshold, where unidirectional operation starts. Bidirectional operation reveals that just above threshold, the lasers operate in a regime where the two counterpropagating modes are continuous wave. As the injected current is increased, a new regime appears where the intensities of the two counterpropagating modes undergo alternate sinusoidal oscillations with frequency in the tens of megahertz range. The regime with alternate oscillations was previously observed in ring lasers of the gas and dye type, and it is here reported and investigated in semiconductor ring lasers. A theoretical model based on a mean field approach for the two counterpropagating modes is proposed to study the semiconductor ring laser dynamics. Numerical results are in agreement with the regime sequence experimentally observed when the injected current is increased (i.e., bidirectional continuous-wave, bidirectional with alternate oscillations, unidirectional). The boundaries of the different regimes are studied as a function of the relevant parameters, which turn out to be the pump current and the conservative and dissipative scattering coefficients, responsible for an explicit linear coupling between the two counterpropagating field modes. By a fitting procedure, we obtain good numerical agreement between experiment and theory, and also an estimation for the otherwise unknown scattering parameters.
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2003.817585