Comment on 'Large swelling and percolation in irradiated zircon'

A recent model for the large radiation-induced swelling behavior in irradiated zircon (ZrSiO4) is partially based on results of molecular dynamics simulations of the partial overlap of two collision cascades that predict a densified boundary of polymerized silica and the scattering of the second cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2003-09, Vol.15 (37), p.6447-6468
Hauptverfasser: Corrales, L René, Weber, William J, Chartier, Alain, Meis, Constantin, Crocombette, Jean-Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A recent model for the large radiation-induced swelling behavior in irradiated zircon (ZrSiO4) is partially based on results of molecular dynamics simulations of the partial overlap of two collision cascades that predict a densified boundary of polymerized silica and the scattering of the second cascade away from the densified boundary (Trachenko K, Dove M T and Salje E K H 2003 J. Phys.: Condens. Matter 15 L1). These MD simulations are based on an atomic interaction potential for zircon (Trachenko K, Dove MT and Salje EKH 2001 J. Phys.: Condens. Matter 13 1947) for which, according to our analysis, only reproduces some of the crystallographic properties at equilibrium and do not adequately describe the scattering physics for zircon, and on simulation methodologies for which the standard procedures for boundary conditions of energetic events are ill-defined. In fact, the interatomic potential model used by Tranchenko et al yields a significantly more rigid structure, with very high Frenkel defect formation energies and extremely low entropy and specific heat capacity. The synergy of all these unphysical properties for zircon, naturally leads to highly localized collision cascades. Consequently, the reported results of the cascade simulations, which are events far from equilibrium, may be artifacts of both the potential model and simulation methodologies employed. Thus, the structural changes predicted by the simulations must be viewed cautiously, and these simulations results cannot be taken as confirmation of a new scattering physics process that is the basis for the proposed swelling model. In this comment, the deficiencies in the atomic interaction potential and methodologies employed by these authors are critically reviewed, and the validity of the cascade overlap simulations and proposed physics is discussed.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/15/37/N01