Synthesis of Various 3-Substituted 1,2,4-Oxadiazole-Containing Chiral β3- and α-Amino Acids from Fmoc-Protected Aspartic Acid

Various 3-substituted chiral 1,2,4-oxadiazole-containing Fmoc-β3- and -α-amino acids were synthesized from Fmoc-(l or d)-Asp(OtBu)-OH and Fmoc-l-Asp-OtBu, respectively, in three steps (i.e., condensation of an aspartyl derivative with differentially substituted amidoximes, formation of the 1,2,4-oxa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2003-09, Vol.68 (19), p.7316-7321
Hauptverfasser: Hamzé, Abdallah, Hernandez, Jean-François, Fulcrand, Pierre, Martinez, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Various 3-substituted chiral 1,2,4-oxadiazole-containing Fmoc-β3- and -α-amino acids were synthesized from Fmoc-(l or d)-Asp(OtBu)-OH and Fmoc-l-Asp-OtBu, respectively, in three steps (i.e., condensation of an aspartyl derivative with differentially substituted amidoximes, formation of the 1,2,4-oxadiazole, and cleavage of the tert-butyl ester). These compounds represent new series of nonnatural amino acids, which could be used in combinatorial synthesis. A simple protocol has been developed to generate the 1,2,4-oxadiazole ring. Indeed, common methods resulted in cleavage of the Fmoc group or required long reaction times. We found that sodium acetate in refluxing ethanol/water (86 °C) was a convenient and efficient catalyst to promote conversion of Fmoc-amino acyl amidoximes to 1,2,4-oxadiazoles, and this procedure proved to be compatible with Fmoc protection. It is shown that these compounds can be prepared without significant loss of enantiomerical purity. Furthermore, the alkaline conditions used to cleave the Fmoc protecting group from these compounds did not induce epimerization of their chiral center.
ISSN:0022-3263
1520-6904
DOI:10.1021/jo0345953