Improving the Precision of Equality-Based Dataflow Analyses
We present two new, orthogonal techniques for improving the precision of equality-based dataflow analyses. Subtype expansion models objects at a per-type granularity, enabling a form of subtype-restricted equality constraint, while mutation tracking uses a simple effect analysis to avoid a class of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present two new, orthogonal techniques for improving the precision of equality-based dataflow analyses. Subtype expansion models objects at a per-type granularity, enabling a form of subtype-restricted equality constraint, while mutation tracking uses a simple effect analysis to avoid a class of false aliases induced by the bidirectional nature of equality constraints. The utility and costs of these techniques are demonstrated in a context-sensitive interprocedural optimization whose static precision improves by 6-600% when our techniques are applied. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-45789-5_19 |