An Extensional Böhm Model

We show the existence of an infinitary confluent and normalising extension of the finite extensional lambda calculus with beta and eta. Besides infinite beta reductions also infinite eta reductions are possible in this extension, and terms without head normal form can be reduced to bottom. As coroll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Severi, Paula, de Vries, Fer-Jan
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show the existence of an infinitary confluent and normalising extension of the finite extensional lambda calculus with beta and eta. Besides infinite beta reductions also infinite eta reductions are possible in this extension, and terms without head normal form can be reduced to bottom. As corollaries we obtain a simple, syntax based construction of an extensional Böhm model of the finite lambda calculus; and a simple, syntax based proof that two lambda terms have the same semantics in this model if and only if they have the same eta-Böhm tree if and only if they are observationally equivalent wrt to beta normal forms. The confluence proof reduces confluence of beta, bottom and eta via infinitary commutation and postponement arguments to confluence of beta and bottom and confluence of eta. We give counterexamples against confluence of similar extensions based on the identification of the terms without weak head normal form and the terms without top normal form (rootactive terms) respectively.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-45610-4_12