Attribute Selection with a Multi-objective Genetic Algorithm
In this paper we address the problem of multi-objective attribute selection in data mining. We propose a multi-objective genetic algorithm (GA) based on the wrapper approach to discover the best subset of attributes for a given classification algorithm, namely C4.5, a well-known decision-tree algori...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we address the problem of multi-objective attribute selection in data mining. We propose a multi-objective genetic algorithm (GA) based on the wrapper approach to discover the best subset of attributes for a given classification algorithm, namely C4.5, a well-known decision-tree algorithm. The two objectives to be minimized are the error rate and the size of the tree produced by C4.5. The proposed GA is a multi-objective method in the sense that it discovers a set of non-dominated solutions (attribute subsets), according to the concept of Pareto dominance. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-36127-8_27 |