Attribute Selection with a Multi-objective Genetic Algorithm

In this paper we address the problem of multi-objective attribute selection in data mining. We propose a multi-objective genetic algorithm (GA) based on the wrapper approach to discover the best subset of attributes for a given classification algorithm, namely C4.5, a well-known decision-tree algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pappa, Gisele L., Freitas, Alex A., Kaestner, Celso A. A.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we address the problem of multi-objective attribute selection in data mining. We propose a multi-objective genetic algorithm (GA) based on the wrapper approach to discover the best subset of attributes for a given classification algorithm, namely C4.5, a well-known decision-tree algorithm. The two objectives to be minimized are the error rate and the size of the tree produced by C4.5. The proposed GA is a multi-objective method in the sense that it discovers a set of non-dominated solutions (attribute subsets), according to the concept of Pareto dominance.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-36127-8_27