A Comparative Study of Selective Breeding Strategies in a Multiobjective Genetic Algorithm

The design of Pressurized Water Reactor (PWR) reload cores is a difficult combinatorial optimization problem with multiple competing objectives. This paper describes the use of a Genetic Algorithm (GA) to perform true multiobjective optimization on the PWR reload core design problem and improvements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wildman, Andrew, Parks, Geoff
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design of Pressurized Water Reactor (PWR) reload cores is a difficult combinatorial optimization problem with multiple competing objectives. This paper describes the use of a Genetic Algorithm (GA) to perform true multiobjective optimization on the PWR reload core design problem and improvements made to its performance in identifying nondominated solutions to represent the trade-off surface between competing objectives. The use of different pairing strategies for combining parents is investigated and found to produce promising results in some cases.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-36970-8_30