Finite Domain Constraint Satisfaction Using Quantum Computation
We present a quantum algorithm for finite domain constraint solving, where the constraints have arity 2. It is complete and runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a quantum algorithm for finite domain constraint solving, where the constraints have arity 2. It is complete and runs in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
O\left( {\left( {\left[ {d/2} \right]} \right)^{n/2} } \right)
$$\end{document}
time, where d is size of the domain of the variables and n the number of variables. For the case of d = 3 we provide a method to obtain an upper time bound of O(8n/8) ≈ O(1.2968n). Also for d = 5 the upper bound has been improved. Using this method in a slightly different way we can decide 3-colourability in O(1.2185n) time. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-45687-2_7 |