Subgraph Isomorphism, log-Bounded Fragmentation and Graphs of (Locally) Bounded Treewidth
The subgraph isomorphism problem, that of finding a copy of one graph in another, has proved to be intractable except when certain restrictions are placed on the inputs. In this paper, we introduce a new property for graphs (a generalization on bounded degree) and extend the known classes of inputs...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The subgraph isomorphism problem, that of finding a copy of one graph in another, has proved to be intractable except when certain restrictions are placed on the inputs. In this paper, we introduce a new property for graphs (a generalization on bounded degree) and extend the known classes of inputs for which polynomial-time subgraph isomorphism algorithms are attainable. In particular, if the removal of any set of at most k vertices from an n-vertex graph results in O(k log n) connected components, we say that the graph is a log-bounded fragmentation graph. We present a polynomial-time algorithm for finding a subgraph of H iso-morphic to a graph G when G is a log-bounded fragmentation graph and H has bounded treewidth; these results are extended to handle graphs of locally bounded treewidth (a generalization of treewidth) when G is a log-bounded fragmentation graph and has constant diameter. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-45687-2_25 |