Land-Use/Land-Cover Change Detection Using Improved Change-Vector Analysis

Change-vector analysis (CVA) is a valuable technique for land-use/land-cover change detection. However, how to reasonably determine thresholds of change magnitude and change direction is a bottleneck to its proper application. In this paper, a new method is proposed to improve CVA. The method (the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photogrammetric engineering and remote sensing 2003-04, Vol.69 (4), p.369-379
Hauptverfasser: Chen, Jin, Gong, Peng, He, Chunyang, Pu, Ruiliang, Shi, Peijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Change-vector analysis (CVA) is a valuable technique for land-use/land-cover change detection. However, how to reasonably determine thresholds of change magnitude and change direction is a bottleneck to its proper application. In this paper, a new method is proposed to improve CVA. The method (the improved CVA) consists of two stages, Double-Window Flexible Pace Search (DFPS), which aims at determining the threshold of change magnitude, and direction cosines of change vectors for determining change direction (category) that combines single-date image classification with a minimum-distance categorizing technique. When the improved CVA was applied to the detection of the land-use/land-cover changes in the Haidian District, Beijing, China, Kappa coefficients of "change/no-change" detection and "from-to" types of change detection were 0.87 and greater than 0.7, respectively, for all kinds of land-use changes. The experimental results indicate that the improved CVA has good potential in land-use/land-cover change detection.
ISSN:0099-1112
2374-8079
DOI:10.14358/PERS.69.4.369