Classification of multispectral images based on a fuzzy-possibilistic neural network

In this paper, a new Hopfield-model net based on fuzzy possibilistic reasoning is proposed for the classification of multispectral images. The main purpose is to modify the Hopfield network embedded with fuzzy possibilistic C-means (FPCM) method to construct a classification system named fuzzy-possi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on human-machine systems 2002-11, Vol.32 (4), p.499-506
Hauptverfasser: LIN, Jzau-Sheng, LIU, Shao-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new Hopfield-model net based on fuzzy possibilistic reasoning is proposed for the classification of multispectral images. The main purpose is to modify the Hopfield network embedded with fuzzy possibilistic C-means (FPCM) method to construct a classification system named fuzzy-possibilistic Hopfield net (FPHN). The classification system is a paradigm for the implementation of fuzzy logic systems in neural network architecture. Instead of one state in a neuron for the conventional Hopfield nets, each neuron occupies 2 states called membership state and typicality state in the proposed FPHN. The proposed network not only solves the noise sensitivity fault of Fuzzy C-means (FCM) but also overcomes the simultaneous clustering problem of possibilistic C-means (PCM) strategy. In addition to the same characteristics as the FPCM algorithm, the simple features of this network are clear potential in optimal problem. The experimental results show that the proposed FPHN can obtain better solutions in the classification of multispectral images.
ISSN:1094-6977
2168-2291
1558-2442
2168-2305
DOI:10.1109/TSMCC.2002.807276