Towards a Simple Clustering Criterion Based on Minimum Length Encoding
We propose a simple and intuitive clustering evaluation criterion based on the minimum description length principle which yields a particularly simple way of describing and encoding a set of examples. The basic idea is to view a clustering as a restriction of the attribute domains, given an example’...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a simple and intuitive clustering evaluation criterion based on the minimum description length principle which yields a particularly simple way of describing and encoding a set of examples. The basic idea is to view a clustering as a restriction of the attribute domains, given an example’s cluster membership. As a special operational case we develop the so-called rectangular uniform message length measure that can be used to evaluate clusterings described as sets of hyper-rectangles. We theoretically prove that this measure punishes cluster boundaries in regions of uniform instance distribution (i.e., unintuitive clusterings), and we experimentally compare a simple clustering algorithm using this measure with the well-known algorithms KMeans and AutoClass. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-36755-1_22 |