Indexical-Based Solver Learning

The pioneering works of Apt and Monfroy, and Abdennadher and Rigotti have shown that the construction of rule-based solvers can be automated using machine learning techniques. Both works implement the solver as a set of CHRs. But many solvers use the more specialized chaotic iteration of operators a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dao, Thi Bich Hanh, Lallouet, Arnaud, Legtchenko, Andrei, Martin, Lionel
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pioneering works of Apt and Monfroy, and Abdennadher and Rigotti have shown that the construction of rule-based solvers can be automated using machine learning techniques. Both works implement the solver as a set of CHRs. But many solvers use the more specialized chaotic iteration of operators as operational semantics and not CHR’s rewriting semantics. In this paper, we first define a language-independent framework for operator learning and then we apply it to the learning of partial arc-consistency operators for a subset of the indexical language of Gnu-Prolog and show the effectiveness of our approach by two implementations. On tested examples, Gnu-Prolog solvers are learned from their original constraints and powerful propagators are found for user-defined constraints.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-46135-3_36