Indexical-Based Solver Learning
The pioneering works of Apt and Monfroy, and Abdennadher and Rigotti have shown that the construction of rule-based solvers can be automated using machine learning techniques. Both works implement the solver as a set of CHRs. But many solvers use the more specialized chaotic iteration of operators a...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pioneering works of Apt and Monfroy, and Abdennadher and Rigotti have shown that the construction of rule-based solvers can be automated using machine learning techniques. Both works implement the solver as a set of CHRs. But many solvers use the more specialized chaotic iteration of operators as operational semantics and not CHR’s rewriting semantics. In this paper, we first define a language-independent framework for operator learning and then we apply it to the learning of partial arc-consistency operators for a subset of the indexical language of Gnu-Prolog and show the effectiveness of our approach by two implementations. On tested examples, Gnu-Prolog solvers are learned from their original constraints and powerful propagators are found for user-defined constraints. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-46135-3_36 |