Commercial Applications of Machine Learning for Personalized Wireless Portals

Consumers and businesses have access to vast stores of information on the Internet, ranging from newspapers, shopping catalogs, restaurant guides, classified ads, jobs listings, dating services to discussion groups and e-mail. All this information is typically accessible only while users are in fron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pazzani, Michael J.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consumers and businesses have access to vast stores of information on the Internet, ranging from newspapers, shopping catalogs, restaurant guides, classified ads, jobs listings, dating services to discussion groups and e-mail. All this information is typically accessible only while users are in front of a computer at home or in an office. Wireless devices allow unprecedented access to information from any location at any time. The presentation of this information must be tailored to the constraints of mobile devices. Small screens, slower connections, high latency and limited input capabilities present new challenges. Agents that learn user’s preferences and select information for the user are a convenience when displaying information on a 19-inch desktop monitor accessed over a broadband connection; they are essential on a handheld wireless device. This paper summarizes commercially deployed systems using machine learning methods for personalizing mobile information delivery.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-45683-X_1