Anisotropic flux density dependence of magnetic Barkhausen noise in oriented 3% Si-Fe steel laminates

This paper compares the anisotropy of surface magnetic Barkhausen noise (MBN) and pulse height distributions between two samples of oriented 3% Si-Fe steel laminate at equivalent flux densities. One sample had lower core loss (0.83 W/kg) than the other (0.97 W/kg). The MBN/sub Energy/ (square of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2003-01, Vol.39 (1), p.562-566
Hauptverfasser: Krause, T.W., Szpunar, J.A., Atherton, D.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper compares the anisotropy of surface magnetic Barkhausen noise (MBN) and pulse height distributions between two samples of oriented 3% Si-Fe steel laminate at equivalent flux densities. One sample had lower core loss (0.83 W/kg) than the other (0.97 W/kg). The MBN/sub Energy/ (square of the MBN voltage signal integrated with respect to time) was investigated parallel and perpendicular to the samples' easy axis. The highest levels of MBN/sub Energy/ and magnetization were achieved in the parallel orientation in the low-core-loss sample. The considerable anisotropies observed under similar field conditions were largely removed when the MBN/sub Energy/ was considered as a function of peak flux density. Differences between the two samples were observed in the anisotropic behavior of the MBN/sub Energy/ and pulse height distributions for flux density amplitudes between 1.3 and 1.6 T, the typical operating range of transformer laminates. These were attributed to differences in the number and structure of 180/spl deg/ domain walls. The low-core-loss sample was interpreted as having a finer domain-wall structure that produced abrupt changes in the magnetization projected out of the sample plane, thereby reducing the microscopic eddy-current contribution to losses.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2002.806352