Numerical study on performance of disk MHD generator using frozen inert gas plasma
In an magnetohydrodynamic (MHD) generator using a frozen inert gas plasma (FIP), the availability of a frozen argon plasma, the influence of plasma uniformity at the generator inlet on the performance, and the feasibility of a large-scale generator are numerically examined by /spl gamma/-/spl theta/...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2002-12, Vol.30 (6), p.2152-2159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In an magnetohydrodynamic (MHD) generator using a frozen inert gas plasma (FIP), the availability of a frozen argon plasma, the influence of plasma uniformity at the generator inlet on the performance, and the feasibility of a large-scale generator are numerically examined by /spl gamma/-/spl theta/ two-dimensional simulation. The FIP is produced by pre-ionizing inert gas without an alkali metal seed at the generator inlet, then the ionization degree of the plasma is kept almost constant in the whole of the channel because of considerable slow recombination of the inert gas just like frozen reaction plasma. It is found that not only helium, but also argon frozen plasma MHD generation is realized, although highly accurate control of inlet ionization degree is necessary for argon. It is important to reduce the nonuniformity of plasma properties at the generator inlet in order to raise the maximum enthalpy extraction ratio. Even for the large-scale generator with 1000-MW thermal input, the ionization degree is kept almost constant in the whole of the channel and the high performance is obtainable. This result is extremely attractive for the FIP MHD generator. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2002.806616 |