Dynamics of ICA for High-Dimensional Data
The learning dynamics close to the initial conditions of an on-line Hebbian ICA algorithm has been studied. For large input dimension the dynamics can be described by a diffusion equation.A surprisingly large number of examples and unusually low initial learning rate are required to avoid a stochast...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The learning dynamics close to the initial conditions of an on-line Hebbian ICA algorithm has been studied. For large input dimension the dynamics can be described by a diffusion equation.A surprisingly large number of examples and unusually low initial learning rate are required to avoid a stochastic trapping state near the initial conditions. Escape from this state results in symmetry breaking and the algorithm therefore avoids trapping in plateau-like fixed points which have been observed in other learning algorithms. |
---|---|
ISSN: | 0302-9743 |
DOI: | 10.1007/3-540-46084-5_180 |