Applying Boosting Techniques to Genetic Programming
This article deals with an improvement for genetic programming based on a technique originating from the machine learning field: boosting. In a first part of this paper, we test the improvements offered by boosting on binary problems. Then we propose to deal with regression problems, and propose an...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article deals with an improvement for genetic programming based on a technique originating from the machine learning field: boosting. In a first part of this paper, we test the improvements offered by boosting on binary problems. Then we propose to deal with regression problems, and propose an algorithm, called GPboost, that keeps closer to the original idea of distribution in Adaboost than what has been done in previous implementation of boosting for genetic programming. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-46033-0_22 |