Manifold Stochastic Dynamics for Bayesian Learning

We propose a new Markov Chain Monte Carlo algorithm, which is a generalization of the stochastic dynamics method. The algorithm performs exploration of the state-space using its intrinsic geometric structure, which facilitates efficient sampling of complex distributions. Applied to Bayesian learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2001-11, Vol.13 (11), p.2549-2572
Hauptverfasser: Zlochin, Mark, Baram, Yoram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new Markov Chain Monte Carlo algorithm, which is a generalization of the stochastic dynamics method. The algorithm performs exploration of the state-space using its intrinsic geometric structure, which facilitates efficient sampling of complex distributions. Applied to Bayesian learning in neural networks, our algorithm was found to produce results comparable to the best state-of-the-art method while consuming considerably less time.
ISSN:0899-7667
1530-888X
DOI:10.1162/089976601753196021