Manifold Stochastic Dynamics for Bayesian Learning
We propose a new Markov Chain Monte Carlo algorithm, which is a generalization of the stochastic dynamics method. The algorithm performs exploration of the state-space using its intrinsic geometric structure, which facilitates efficient sampling of complex distributions. Applied to Bayesian learning...
Gespeichert in:
Veröffentlicht in: | Neural computation 2001-11, Vol.13 (11), p.2549-2572 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a new Markov Chain Monte Carlo algorithm, which is a generalization of the stochastic dynamics method. The algorithm performs exploration of the state-space using its intrinsic geometric structure, which facilitates efficient sampling of complex distributions. Applied to Bayesian learning in neural networks, our algorithm was found to produce results comparable to the best state-of-the-art method while consuming considerably less time. |
---|---|
ISSN: | 0899-7667 1530-888X |
DOI: | 10.1162/089976601753196021 |