Decomposition of H2O2 on activated carbon obtained from olive stones

Activated carbons were prepared from olive oil solid wastes by treatment in different schemes: impregnation with H3PO4 followed by pyrolysis at 300–700 °C, by steam pyrolysis at 600–700 °C, or by conventional steam activation at 850 °C. Porosity characteristics were determined by analysis of nitroge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 2001-11, Vol.76 (11), p.1132-1140
Hauptverfasser: Khalil, Laila B, Girgis, Badie S, Tawfik, Tarek A M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activated carbons were prepared from olive oil solid wastes by treatment in different schemes: impregnation with H3PO4 followed by pyrolysis at 300–700 °C, by steam pyrolysis at 600–700 °C, or by conventional steam activation at 850 °C. Porosity characteristics were determined by analysis of nitrogen adsorption isotherms, and carbons of widely different properties and surface pH values were obtained. Decomposition of H2O2 in dilute unbuffered solution was followed by measuring evolved oxygen volumetrically. First‐order kinetics was followed, and the catalytic rate coefficients were evaluated. The carbons tested showed appreciable activity where evolved oxygen attained ≈10% of the stoichiometric amount in 1 h. The degree of decomposition showed inverse dependence on surface area, pore volume and mean pore dimensions. The chemical nature of the surface, rather than the porosity characteristics, was the principal factor in enhancing the disproportionation of H2O2 on the activated carbon surface. © 2001 Society of Chemical Industry
ISSN:0268-2575
1097-4660
DOI:10.1002/jctb.481