Beta-Expansions for Cubic Pisot Numbers
Real numbers can be represented in an arbitrary base β > 1 using the transformation Tβ : x → βx (mod 1) of the unit interval; any real number x ∈ [0, 1] is then expanded into dβ(x) = (xi)i≥1 where xi = ⌊βTi-1β(x)⌋ The closure of the set of the expansions of real numbers of [0, 1] is a subshift of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Real numbers can be represented in an arbitrary base β > 1 using the transformation Tβ : x → βx (mod 1) of the unit interval; any real number x ∈ [0, 1] is then expanded into dβ(x) = (xi)i≥1 where xi = ⌊βTi-1β(x)⌋
The closure of the set of the expansions of real numbers of [0, 1] is a subshift of a ∈ ℕ a < β ℕ, called the beta-shift. This dynamical system is characterized by the beta-expansion of 1; in particular, it is of finite type if and only if dβ(1) is finite; β is then called a simple beta-number.
We first compute the beta-expansion of 1 for any cubic Pisot number. Next we show that cubic simple beta-numbers are Pisot numbers. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-45995-2_17 |