Activity and Stability Studies Of Mucor miehei Lipase Immobilized in Novel Microemulsion-based Organogels

Lipase from Mucor miehei was immobilized in bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) as well as lecithin water-in-oil (w/o) microemulsion-based organogels (MBGs) formulated with biopolymers such as agar and hydroxypropylmethyl cellulose (HPMC), respectively. These lipase-containing MBGs pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biocatalysis and biotransformation 2002-01, Vol.20 (5), p.319-327
Hauptverfasser: Delimitsou, Charikleia, Zoumpanioti, Maria, Xenakis, Aristotelis, Stamatis, Haralambos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lipase from Mucor miehei was immobilized in bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) as well as lecithin water-in-oil (w/o) microemulsion-based organogels (MBGs) formulated with biopolymers such as agar and hydroxypropylmethyl cellulose (HPMC), respectively. These lipase-containing MBGs prove to be novel solid-phase catalysts for use in organic media. Using these organogels at 25°C, various esterification reactions in non-polar solvents as well as in solvent free systems were possible. Apparent lipase activity was influenced to some extent by the nature and the concentration of biopolymers used. Lipase stability in such MBGs is much higher than that observed in w/o microemulsions. MBGs containing lipase functioned effectively in repeated batch syntheses of fatty esters. Kinetic studies have shown that ester synthesis catalyzed by immobilized lipase occurs via the Ping-Pong bi-bi mechanism in which only inhibition by excess of alcohol has been identified. Values of all kinetic parameters were determined.
ISSN:1024-2422
1029-2446
DOI:10.1080/10242420290025539