Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems

We consider reversible, conservative Ginzburg–Landau processes, whose potential are bounded perturbations of the Gaussian potential, evolving on a d-dimensional cube of length L. Following the martingale approach introduced in (S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'I.H.P. Probabilités et statistiques 2002, Vol.38 (5), p.739-777
Hauptverfasser: Landim, C., Panizo, G., Yau, H.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 777
container_issue 5
container_start_page 739
container_title Annales de l'I.H.P. Probabilités et statistiques
container_volume 38
creator Landim, C.
Panizo, G.
Yau, H.T.
description We consider reversible, conservative Ginzburg–Landau processes, whose potential are bounded perturbations of the Gaussian potential, evolving on a d-dimensional cube of length L. Following the martingale approach introduced in (S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 433–499), we prove in all dimensions that the spectral gap of the generator and the logarithmic Sobolev constant are of order L −2. Nous considérons des processus de Ginzburg–Landau réversibles, dont le potentiel est une perturbation bornée du potential Gaussien, évoluent sur un cube d-dimensionel de largeur L. Suivant la méthode martingale introduite dans (S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 433–499), nous démontrons qu'en toute dimension le trou spectral et la constante de Sobolev logarithmique sont d'ordre L −2.
doi_str_mv 10.1016/S0246-0203(02)01108-1
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_13851251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0246020302011081</els_id><sourcerecordid>S0246020302011081</sourcerecordid><originalsourceid>FETCH-LOGICAL-e239t-ac6ee0e3cdacafa6582808dfe7969866fc9f75cf1bd01489ddab68fdd299096d3</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAcFKwfP0HIRdDD6mS3m25OIsUvKHio4jHMJpMa2WbXZLvQf--2FS8zMLy8DA9jlwJuBQh5t4R8KjPIobiG_AaEgCoTR2zyfz5hpyl9A4BUICfsc9mR6SM2fIUdx2B5064w-v5r7Q1ftnXb0MB9oJ8NNr7fctdGvgl1uwmWLDdtSBQH7P1APHU-8LRNPa3TOTt22CS6-Ntn7OPp8X3-ki3enl_nD4uM8kL1GRpJBFQYiwYdyrLKK6iso5mSqpLSGeVmpXGitiCmlbIWa1k5a3OlQElbnLGrQ2-HyWDjIgbjk-6iX2PcalFUpchLMebuDzkanxk8RZ2Mp2DI-jgCaNt6LUDvDPXeUO-wxqH3hmPRL7yOaeU</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems</title><source>Alma/SFX Local Collection</source><source>NUMDAM</source><creator>Landim, C. ; Panizo, G. ; Yau, H.T.</creator><creatorcontrib>Landim, C. ; Panizo, G. ; Yau, H.T.</creatorcontrib><description>We consider reversible, conservative Ginzburg–Landau processes, whose potential are bounded perturbations of the Gaussian potential, evolving on a d-dimensional cube of length L. Following the martingale approach introduced in (S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 433–499), we prove in all dimensions that the spectral gap of the generator and the logarithmic Sobolev constant are of order L −2. Nous considérons des processus de Ginzburg–Landau réversibles, dont le potentiel est une perturbation bornée du potential Gaussien, évoluent sur un cube d-dimensionel de largeur L. Suivant la méthode martingale introduite dans (S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 433–499), nous démontrons qu'en toute dimension le trou spectral et la constante de Sobolev logarithmique sont d'ordre L −2.</description><identifier>ISSN: 0246-0203</identifier><identifier>DOI: 10.1016/S0246-0203(02)01108-1</identifier><identifier>CODEN: AHPBAR</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Exact sciences and technology ; Interacting particle systems ; Limit theorems ; Logarithmic Sobolev inequality ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Spectral gap</subject><ispartof>Annales de l'I.H.P. Probabilités et statistiques, 2002, Vol.38 (5), p.739-777</ispartof><rights>2002 Éditions scientifiques et médicales Elsevier SAS</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13851251$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Landim, C.</creatorcontrib><creatorcontrib>Panizo, G.</creatorcontrib><creatorcontrib>Yau, H.T.</creatorcontrib><title>Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems</title><title>Annales de l'I.H.P. Probabilités et statistiques</title><description>We consider reversible, conservative Ginzburg–Landau processes, whose potential are bounded perturbations of the Gaussian potential, evolving on a d-dimensional cube of length L. Following the martingale approach introduced in (S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 433–499), we prove in all dimensions that the spectral gap of the generator and the logarithmic Sobolev constant are of order L −2. Nous considérons des processus de Ginzburg–Landau réversibles, dont le potentiel est une perturbation bornée du potential Gaussien, évoluent sur un cube d-dimensionel de largeur L. Suivant la méthode martingale introduite dans (S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 433–499), nous démontrons qu'en toute dimension le trou spectral et la constante de Sobolev logarithmique sont d'ordre L −2.</description><subject>Exact sciences and technology</subject><subject>Interacting particle systems</subject><subject>Limit theorems</subject><subject>Logarithmic Sobolev inequality</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Spectral gap</subject><issn>0246-0203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNo90E1LAzEQBuAcFKwfP0HIRdDD6mS3m25OIsUvKHio4jHMJpMa2WbXZLvQf--2FS8zMLy8DA9jlwJuBQh5t4R8KjPIobiG_AaEgCoTR2zyfz5hpyl9A4BUICfsc9mR6SM2fIUdx2B5064w-v5r7Q1ftnXb0MB9oJ8NNr7fctdGvgl1uwmWLDdtSBQH7P1APHU-8LRNPa3TOTt22CS6-Ntn7OPp8X3-ki3enl_nD4uM8kL1GRpJBFQYiwYdyrLKK6iso5mSqpLSGeVmpXGitiCmlbIWa1k5a3OlQElbnLGrQ2-HyWDjIgbjk-6iX2PcalFUpchLMebuDzkanxk8RZ2Mp2DI-jgCaNt6LUDvDPXeUO-wxqH3hmPRL7yOaeU</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Landim, C.</creator><creator>Panizo, G.</creator><creator>Yau, H.T.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems</title><author>Landim, C. ; Panizo, G. ; Yau, H.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e239t-ac6ee0e3cdacafa6582808dfe7969866fc9f75cf1bd01489ddab68fdd299096d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Exact sciences and technology</topic><topic>Interacting particle systems</topic><topic>Limit theorems</topic><topic>Logarithmic Sobolev inequality</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Spectral gap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landim, C.</creatorcontrib><creatorcontrib>Panizo, G.</creatorcontrib><creatorcontrib>Yau, H.T.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Annales de l'I.H.P. Probabilités et statistiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landim, C.</au><au>Panizo, G.</au><au>Yau, H.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems</atitle><jtitle>Annales de l'I.H.P. Probabilités et statistiques</jtitle><date>2002</date><risdate>2002</risdate><volume>38</volume><issue>5</issue><spage>739</spage><epage>777</epage><pages>739-777</pages><issn>0246-0203</issn><coden>AHPBAR</coden><abstract>We consider reversible, conservative Ginzburg–Landau processes, whose potential are bounded perturbations of the Gaussian potential, evolving on a d-dimensional cube of length L. Following the martingale approach introduced in (S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 433–499), we prove in all dimensions that the spectral gap of the generator and the logarithmic Sobolev constant are of order L −2. Nous considérons des processus de Ginzburg–Landau réversibles, dont le potentiel est une perturbation bornée du potential Gaussien, évoluent sur un cube d-dimensionel de largeur L. Suivant la méthode martingale introduite dans (S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 433–499), nous démontrons qu'en toute dimension le trou spectral et la constante de Sobolev logarithmique sont d'ordre L −2.</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/S0246-0203(02)01108-1</doi><tpages>39</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0246-0203
ispartof Annales de l'I.H.P. Probabilités et statistiques, 2002, Vol.38 (5), p.739-777
issn 0246-0203
language eng
recordid cdi_pascalfrancis_primary_13851251
source Alma/SFX Local Collection; NUMDAM
subjects Exact sciences and technology
Interacting particle systems
Limit theorems
Logarithmic Sobolev inequality
Mathematics
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
Spectral gap
title Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20gap%20and%20logarithmic%20Sobolev%20inequality%20for%20unbounded%20conservative%20spin%20systems&rft.jtitle=Annales%20de%20l'I.H.P.%20Probabilit%C3%A9s%20et%20statistiques&rft.au=Landim,%20C.&rft.date=2002&rft.volume=38&rft.issue=5&rft.spage=739&rft.epage=777&rft.pages=739-777&rft.issn=0246-0203&rft.coden=AHPBAR&rft_id=info:doi/10.1016/S0246-0203(02)01108-1&rft_dat=%3Celsevier_pasca%3ES0246020302011081%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0246020302011081&rfr_iscdi=true