Solving Extended Hybrid-Flow-Shop Problems Using Active Schedule Generation and Genetic Algorithms
We propose a hybrid approach for solving hybrid-flow-shop problems based on the combination of genetic algorithms and a modified Giffler & Thompson (G&T) algorithm. Several extensions of the hybrid-flow-shop are considered and discussed in the context of a real-world example. The genome in t...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a hybrid approach for solving hybrid-flow-shop problems based on the combination of genetic algorithms and a modified Giffler & Thompson (G&T) algorithm. Several extensions of the hybrid-flow-shop are considered and discussed in the context of a real-world example. The genome in the GA encodes a choice of rules to be used to generate production schedules via the G&T algorithm. All constraints to the scheduling task are observed by the G&T algorithm. Therefore, it provides a well suited representation for the GA and leads to a decoupling of domain specific details and genetic optimization. The proposed method is applied to the optimization of a batch annealing plant. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-45356-3_29 |