Nonlinearity Bounds and Constructions of Resilient Boolean Functions

In this paper we investigate the relationship between the nonlinearity and the order of resiliency of a Boolean function. We first prove a sharper version of McEliece theorem for Reed-Muller codes as applied to resilient functions, which also generalizes the well known Xiao-Massey characterization....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sarkar, Palash, Maitra, Subhamoy
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we investigate the relationship between the nonlinearity and the order of resiliency of a Boolean function. We first prove a sharper version of McEliece theorem for Reed-Muller codes as applied to resilient functions, which also generalizes the well known Xiao-Massey characterization. As a consequence, a nontrivial upper bound on the nonlinearity of resilient functions is obtained. This result coupled with Siegenthaler’s inequality leads to the notion of best possible trade-off among the parameters: number of variables, order of resiliency, nonlinearity and algebraic degree. We further show that functions achieving the best possible trade-off can be constructed by the Maiorana-McFarland like technique. Also we provide constructions of some previously unknown functions.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-44598-6_32