Quantitative analysis of RADARSAT SAR data over a sparse forest canopy

This article studies the behavior of the backscattering coefficient of a sparse forest canopy composed of relatively short black spruce trees. Qualitative analysis of the multiangular data measured by the RADARSAT synthetic aperture radar (SAR) sensor shows a good agreement with surface and vegetati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2002-06, Vol.40 (6), p.1301-1313
Hauptverfasser: Magagi, R., Bernier, M., Chhun-Huor Ung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article studies the behavior of the backscattering coefficient of a sparse forest canopy composed of relatively short black spruce trees. Qualitative analysis of the multiangular data measured by the RADARSAT synthetic aperture radar (SAR) sensor shows a good agreement with surface and vegetation volume scattering fundamental behaviors. For a quantitative analysis, allometric equations and measurements of tree components collected within the framework of the Extended Collaboration to Link Ecophysiology and Forest Productivity (ECOLEAP) project are used, in an existing multilayer radiative transfer model for forest canopies, to simulate the RADARSAT SAR data. In our approach, the fractional cover of trees estimated from aerial photographs is used as a weighting parameter to adapt the closed-canopy backscattering model to the sparse forest under study. Our objective is to analyze the sensitivity of the backscattering coefficient as a function of sensor configuration, soil wetness, forest cover, and forest structural properties in order to determine the suitable soil, vegetation, and sensor parameters for a given thematic application. For the entire incidence angle domain (20/spl deg/ to 50/spl deg/) of the sensor, simulations show that over a sparse forest composed of mature trees the monitoring of the ground surface is possible only under very wet soil conditions. Therefore, this article informs about the ability of the RADARSAT SAR sensor in monitoring wetlands.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2002.800235