Normal Forms and Reduction for Theories of Binary Relations
We consider equational theories of binary relations, in a language expressing composition, converse, and lattice operations. We treat the equations valid in the standard model of sets and also define a hierarchy of equational axiomatisations stratifying the standard theory. By working directly with...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider equational theories of binary relations, in a language expressing composition, converse, and lattice operations. We treat the equations valid in the standard model of sets and also define a hierarchy of equational axiomatisations stratifying the standard theory. By working directly with a presentation of relation-expressions as graphs we are able to define a notion of reduction which is confluent and strongly normalising, in sharp contrast to traditional treatments based on first-order terms. As consequences we obtain unique normal forms, decidability of the decision problem for equality for each theory. In particular we show a non-deterministic polynomial-time upper bound for the complexity of the decision problems. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/10721975_7 |