Finding Near-Optimal Bayesian Experimental Designs via Genetic Algorithms
This article shows how a genetic algorithm can be used to find near-optimal Bayesia nexperimental designs for regression models. The design criterion considered is the expected Shannon information gain of the posterior distribution obtained from performing a given experiment compared with the prior...
Gespeichert in:
Veröffentlicht in: | The American statistician 2001-08, Vol.55 (3), p.175-181 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article shows how a genetic algorithm can be used to find near-optimal Bayesia nexperimental designs for regression models. The design criterion considered is the expected Shannon information gain of the posterior distribution obtained from performing a given experiment compared with the prior distribution. Genetic algorithms are described and then applied to experimental design. The methodology is then illustrated with a wide range of examples: linear and nonlinear regression, single and multiple factors, and normal and Bernoulli distributed experimental data. |
---|---|
ISSN: | 0003-1305 1537-2731 |
DOI: | 10.1198/000313001317098121 |