Finding Near-Optimal Bayesian Experimental Designs via Genetic Algorithms

This article shows how a genetic algorithm can be used to find near-optimal Bayesia nexperimental designs for regression models. The design criterion considered is the expected Shannon information gain of the posterior distribution obtained from performing a given experiment compared with the prior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American statistician 2001-08, Vol.55 (3), p.175-181
Hauptverfasser: Hamada, M, Martz, H. F, Reese, C. S, Wilson, A. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article shows how a genetic algorithm can be used to find near-optimal Bayesia nexperimental designs for regression models. The design criterion considered is the expected Shannon information gain of the posterior distribution obtained from performing a given experiment compared with the prior distribution. Genetic algorithms are described and then applied to experimental design. The methodology is then illustrated with a wide range of examples: linear and nonlinear regression, single and multiple factors, and normal and Bernoulli distributed experimental data.
ISSN:0003-1305
1537-2731
DOI:10.1198/000313001317098121