Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors

This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zheng, Yuliang, Zhang, Xian-Mo
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue
container_start_page 92
container_title
container_volume 1758
creator Zheng, Yuliang
Zhang, Xian-Mo
description This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors in any (n − 1)-dimensional linear subspace, except for those functions whose nonlinearity takes special values.
doi_str_mv 10.1007/3-540-46513-8_7
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1177321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071683_13_100</sourcerecordid><originalsourceid>FETCH-LOGICAL-p307t-1d0bb361e677b338c3a14d346943be54bb1777e9915646a291f42b9070f0aad63</originalsourceid><addsrcrecordid>eNotkE1P3DAQht1PsaV77jWHXg2ejGPHRwQUkJb20MLVspPJNrC1g22Q-u_xAnMZad4PaR7GvoE4AiH0MfJOCi5VB8h7q9-xtdE91tvLCd-zFSgAjijNB_ZlLygNfSc_spVA0XKjJX5mK9P1Xdsi4AFb53wn6mCrZA8rdv27pBi2zWYO5FJzRguFkcJAjQtjcxP87DKNzdmcS5r9Y5ljaOLU_IyBLykubuvK_ETNLQ0lpvyVfZrcLtP6bR-ymx_nf04v-ebXxdXpyYYvKHThMArvUQEprT1iP6ADOaJURqKnTnoPWmsyBjollWsNTLL1RmgxCedGhYfs-2vv4vLgdlNyYZizXdL8z6X_FmocW6g2_mrLVQlbStbHeJ8tCLvHa9FWYvaFpa14qx_falN8eKRcLO0DA4WS3G7465ZCKdv6A6gebU3VGnwGJnt2vA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071683_13_100</pqid></control><display><type>book_chapter</type><title>Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors</title><source>Springer Books</source><creator>Zheng, Yuliang ; Zhang, Xian-Mo</creator><contributor>Heys, Howard ; Adams, Carlisle ; Heys, Howard ; Adams, Carlisle</contributor><creatorcontrib>Zheng, Yuliang ; Zhang, Xian-Mo ; Heys, Howard ; Adams, Carlisle ; Heys, Howard ; Adams, Carlisle</creatorcontrib><description>This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors in any (n − 1)-dimensional linear subspace, except for those functions whose nonlinearity takes special values.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540671854</identifier><identifier>ISBN: 9783540671855</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540465133</identifier><identifier>EISBN: 3540465138</identifier><identifier>DOI: 10.1007/3-540-46513-8_7</identifier><identifier>OCLC: 958522313</identifier><identifier>LCCallNum: QA268</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Boolean Function ; Cryptography ; Exact sciences and technology ; Information, signal and communications theory ; Nonlinearity ; Propagation ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>Lecture notes in computer science, 2000, Vol.1758, p.92-105</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071683-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-46513-8_7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-46513-8_7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1177321$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Heys, Howard</contributor><contributor>Adams, Carlisle</contributor><contributor>Heys, Howard</contributor><contributor>Adams, Carlisle</contributor><creatorcontrib>Zheng, Yuliang</creatorcontrib><creatorcontrib>Zhang, Xian-Mo</creatorcontrib><title>Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors</title><title>Lecture notes in computer science</title><description>This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors in any (n − 1)-dimensional linear subspace, except for those functions whose nonlinearity takes special values.</description><subject>Applied sciences</subject><subject>Boolean Function</subject><subject>Cryptography</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Nonlinearity</subject><subject>Propagation</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540671854</isbn><isbn>9783540671855</isbn><isbn>9783540465133</isbn><isbn>3540465138</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2000</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkE1P3DAQht1PsaV77jWHXg2ejGPHRwQUkJb20MLVspPJNrC1g22Q-u_xAnMZad4PaR7GvoE4AiH0MfJOCi5VB8h7q9-xtdE91tvLCd-zFSgAjijNB_ZlLygNfSc_spVA0XKjJX5mK9P1Xdsi4AFb53wn6mCrZA8rdv27pBi2zWYO5FJzRguFkcJAjQtjcxP87DKNzdmcS5r9Y5ljaOLU_IyBLykubuvK_ETNLQ0lpvyVfZrcLtP6bR-ymx_nf04v-ebXxdXpyYYvKHThMArvUQEprT1iP6ADOaJURqKnTnoPWmsyBjollWsNTLL1RmgxCedGhYfs-2vv4vLgdlNyYZizXdL8z6X_FmocW6g2_mrLVQlbStbHeJ8tCLvHa9FWYvaFpa14qx_falN8eKRcLO0DA4WS3G7465ZCKdv6A6gebU3VGnwGJnt2vA</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Zheng, Yuliang</creator><creator>Zhang, Xian-Mo</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2000</creationdate><title>Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors</title><author>Zheng, Yuliang ; Zhang, Xian-Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p307t-1d0bb361e677b338c3a14d346943be54bb1777e9915646a291f42b9070f0aad63</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Boolean Function</topic><topic>Cryptography</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Nonlinearity</topic><topic>Propagation</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yuliang</creatorcontrib><creatorcontrib>Zhang, Xian-Mo</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yuliang</au><au>Zhang, Xian-Mo</au><au>Heys, Howard</au><au>Adams, Carlisle</au><au>Heys, Howard</au><au>Adams, Carlisle</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2000</date><risdate>2000</risdate><volume>1758</volume><spage>92</spage><epage>105</epage><pages>92-105</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540671854</isbn><isbn>9783540671855</isbn><eisbn>9783540465133</eisbn><eisbn>3540465138</eisbn><abstract>This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors in any (n − 1)-dimensional linear subspace, except for those functions whose nonlinearity takes special values.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-46513-8_7</doi><oclcid>958522313</oclcid><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2000, Vol.1758, p.92-105
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1177321
source Springer Books
subjects Applied sciences
Boolean Function
Cryptography
Exact sciences and technology
Information, signal and communications theory
Nonlinearity
Propagation
Signal and communications theory
Telecommunications and information theory
title Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Strong%20Linear%20Dependence%20and%20Unbiased%20Distribution%20of%20Non-propagative%20Vectors&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Zheng,%20Yuliang&rft.date=2000&rft.volume=1758&rft.spage=92&rft.epage=105&rft.pages=92-105&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540671854&rft.isbn_list=9783540671855&rft_id=info:doi/10.1007/3-540-46513-8_7&rft_dat=%3Cproquest_pasca%3EEBC3071683_13_100%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540465133&rft.eisbn_list=3540465138&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071683_13_100&rft_id=info:pmid/&rfr_iscdi=true