Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors
This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | |
container_start_page | 92 |
container_title | |
container_volume | 1758 |
creator | Zheng, Yuliang Zhang, Xian-Mo |
description | This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors in any (n − 1)-dimensional linear subspace, except for those functions whose nonlinearity takes special values. |
doi_str_mv | 10.1007/3-540-46513-8_7 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1177321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071683_13_100</sourcerecordid><originalsourceid>FETCH-LOGICAL-p307t-1d0bb361e677b338c3a14d346943be54bb1777e9915646a291f42b9070f0aad63</originalsourceid><addsrcrecordid>eNotkE1P3DAQht1PsaV77jWHXg2ejGPHRwQUkJb20MLVspPJNrC1g22Q-u_xAnMZad4PaR7GvoE4AiH0MfJOCi5VB8h7q9-xtdE91tvLCd-zFSgAjijNB_ZlLygNfSc_spVA0XKjJX5mK9P1Xdsi4AFb53wn6mCrZA8rdv27pBi2zWYO5FJzRguFkcJAjQtjcxP87DKNzdmcS5r9Y5ljaOLU_IyBLykubuvK_ETNLQ0lpvyVfZrcLtP6bR-ymx_nf04v-ebXxdXpyYYvKHThMArvUQEprT1iP6ADOaJURqKnTnoPWmsyBjollWsNTLL1RmgxCedGhYfs-2vv4vLgdlNyYZizXdL8z6X_FmocW6g2_mrLVQlbStbHeJ8tCLvHa9FWYvaFpa14qx_falN8eKRcLO0DA4WS3G7465ZCKdv6A6gebU3VGnwGJnt2vA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071683_13_100</pqid></control><display><type>book_chapter</type><title>Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors</title><source>Springer Books</source><creator>Zheng, Yuliang ; Zhang, Xian-Mo</creator><contributor>Heys, Howard ; Adams, Carlisle ; Heys, Howard ; Adams, Carlisle</contributor><creatorcontrib>Zheng, Yuliang ; Zhang, Xian-Mo ; Heys, Howard ; Adams, Carlisle ; Heys, Howard ; Adams, Carlisle</creatorcontrib><description>This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors in any (n − 1)-dimensional linear subspace, except for those functions whose nonlinearity takes special values.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540671854</identifier><identifier>ISBN: 9783540671855</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540465133</identifier><identifier>EISBN: 3540465138</identifier><identifier>DOI: 10.1007/3-540-46513-8_7</identifier><identifier>OCLC: 958522313</identifier><identifier>LCCallNum: QA268</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Boolean Function ; Cryptography ; Exact sciences and technology ; Information, signal and communications theory ; Nonlinearity ; Propagation ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>Lecture notes in computer science, 2000, Vol.1758, p.92-105</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071683-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-46513-8_7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-46513-8_7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1177321$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Heys, Howard</contributor><contributor>Adams, Carlisle</contributor><contributor>Heys, Howard</contributor><contributor>Adams, Carlisle</contributor><creatorcontrib>Zheng, Yuliang</creatorcontrib><creatorcontrib>Zhang, Xian-Mo</creatorcontrib><title>Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors</title><title>Lecture notes in computer science</title><description>This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors in any (n − 1)-dimensional linear subspace, except for those functions whose nonlinearity takes special values.</description><subject>Applied sciences</subject><subject>Boolean Function</subject><subject>Cryptography</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Nonlinearity</subject><subject>Propagation</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540671854</isbn><isbn>9783540671855</isbn><isbn>9783540465133</isbn><isbn>3540465138</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2000</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkE1P3DAQht1PsaV77jWHXg2ejGPHRwQUkJb20MLVspPJNrC1g22Q-u_xAnMZad4PaR7GvoE4AiH0MfJOCi5VB8h7q9-xtdE91tvLCd-zFSgAjijNB_ZlLygNfSc_spVA0XKjJX5mK9P1Xdsi4AFb53wn6mCrZA8rdv27pBi2zWYO5FJzRguFkcJAjQtjcxP87DKNzdmcS5r9Y5ljaOLU_IyBLykubuvK_ETNLQ0lpvyVfZrcLtP6bR-ymx_nf04v-ebXxdXpyYYvKHThMArvUQEprT1iP6ADOaJURqKnTnoPWmsyBjollWsNTLL1RmgxCedGhYfs-2vv4vLgdlNyYZizXdL8z6X_FmocW6g2_mrLVQlbStbHeJ8tCLvHa9FWYvaFpa14qx_falN8eKRcLO0DA4WS3G7465ZCKdv6A6gebU3VGnwGJnt2vA</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Zheng, Yuliang</creator><creator>Zhang, Xian-Mo</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2000</creationdate><title>Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors</title><author>Zheng, Yuliang ; Zhang, Xian-Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p307t-1d0bb361e677b338c3a14d346943be54bb1777e9915646a291f42b9070f0aad63</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Boolean Function</topic><topic>Cryptography</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Nonlinearity</topic><topic>Propagation</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yuliang</creatorcontrib><creatorcontrib>Zhang, Xian-Mo</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yuliang</au><au>Zhang, Xian-Mo</au><au>Heys, Howard</au><au>Adams, Carlisle</au><au>Heys, Howard</au><au>Adams, Carlisle</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2000</date><risdate>2000</risdate><volume>1758</volume><spage>92</spage><epage>105</epage><pages>92-105</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540671854</isbn><isbn>9783540671855</isbn><eisbn>9783540465133</eisbn><eisbn>3540465138</eisbn><abstract>This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors in any (n − 1)-dimensional linear subspace, except for those functions whose nonlinearity takes special values.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-46513-8_7</doi><oclcid>958522313</oclcid><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2000, Vol.1758, p.92-105 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_1177321 |
source | Springer Books |
subjects | Applied sciences Boolean Function Cryptography Exact sciences and technology Information, signal and communications theory Nonlinearity Propagation Signal and communications theory Telecommunications and information theory |
title | Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Strong%20Linear%20Dependence%20and%20Unbiased%20Distribution%20of%20Non-propagative%20Vectors&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Zheng,%20Yuliang&rft.date=2000&rft.volume=1758&rft.spage=92&rft.epage=105&rft.pages=92-105&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540671854&rft.isbn_list=9783540671855&rft_id=info:doi/10.1007/3-540-46513-8_7&rft_dat=%3Cproquest_pasca%3EEBC3071683_13_100%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540465133&rft.eisbn_list=3540465138&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071683_13_100&rft_id=info:pmid/&rfr_iscdi=true |