Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors
This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors in any (n − 1)-dimensional linear subspace, except for those functions whose nonlinearity takes special values. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-46513-8_7 |