Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors

This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zheng, Yuliang, Zhang, Xian-Mo
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proves (i) in any (n − 1)-dimensional linear sub-space, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any (n − 2)-dimensional linear subspace and there exist three non-propagative vectors in any (n − 1)-dimensional linear subspace, except for those functions whose nonlinearity takes special values.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-46513-8_7