FCL location selection in large scale power system

Maximum short circuit current of a modern power system is becoming so large that the current should be reduced to make more efficient use of power system transmission capability. The fault current limiter (FCL) is a promising solution of this problem and it can be categorized into two types: constan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2001-03, Vol.11 (1), p.2489-2494
Hauptverfasser: Nagata, M., Tanaka, K., Taniguchi, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maximum short circuit current of a modern power system is becoming so large that the current should be reduced to make more efficient use of power system transmission capability. The fault current limiter (FCL) is a promising solution of this problem and it can be categorized into two types: constant impedance type FCL and current limiting type FCL. Current limiting type FCL such as rectifier type superconducting FCL (RSFCL) has variable equivalent impedance depending on the limit of the current through FCL and power system impedances. In this paper, a method is proposed to incorporate RSFCL into short circuit current analysis, which is needed to evaluate the effectiveness of FCL installed in a large scale power system. Also, an efficient method to find FCL locations suitable for reduction of short circuit currents of more than one fault location is developed. The efficiency and effectiveness of these methods are shown by numerical examples.
ISSN:1051-8223
1558-2515
DOI:10.1109/77.920370