FCL location selection in large scale power system
Maximum short circuit current of a modern power system is becoming so large that the current should be reduced to make more efficient use of power system transmission capability. The fault current limiter (FCL) is a promising solution of this problem and it can be categorized into two types: constan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2001-03, Vol.11 (1), p.2489-2494 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maximum short circuit current of a modern power system is becoming so large that the current should be reduced to make more efficient use of power system transmission capability. The fault current limiter (FCL) is a promising solution of this problem and it can be categorized into two types: constant impedance type FCL and current limiting type FCL. Current limiting type FCL such as rectifier type superconducting FCL (RSFCL) has variable equivalent impedance depending on the limit of the current through FCL and power system impedances. In this paper, a method is proposed to incorporate RSFCL into short circuit current analysis, which is needed to evaluate the effectiveness of FCL installed in a large scale power system. Also, an efficient method to find FCL locations suitable for reduction of short circuit currents of more than one fault location is developed. The efficiency and effectiveness of these methods are shown by numerical examples. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/77.920370 |