The Max-Shift Algorithm for Approximate String Matching
The approximate string matching problem is to find all locations which a pattern of length m matches a substring of a text of length n with at most k differences. The program agrep is a simple and practical bit-vector algorithm for this problem. In this paper we consider the following incremental ve...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The approximate string matching problem is to find all locations which a pattern of length m matches a substring of a text of length n with at most k differences. The program agrep is a simple and practical bit-vector algorithm for this problem. In this paper we consider the following incremental version of the problem: given an appropriate encoding of a comparison between A and bB, can one compute the answer for A and B, and the answer for A and Bc with equal efficiency, where b and c are additional symbols? Here we present an elegant and very easy to implement bit-vector algorithm for answering these questions that requires only O(n⌈m/w⌉) time, where n is the length of A, m is the length of B and w is the number of bits in a machine word. We also present an O(nm⌈h/w⌉) algorithm for the fixed-length approximate string matching problem: given a text t, a pattern p and an integer h, compute the optimal alignment of all substrings of p of length h and a substring of t. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-44688-5_2 |