A Modular Software Architecture for Real-Time Video Processing

An increasing number of computer vision applications require online processing of data streams, preferably in real-time. This trend is fueled by the mainstream availability of low cost imaging devices, and the steady increase in computing power. To meet these requirements, applications should manipu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: François, Alexandre R. J., Medioni, Gérard G.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue
container_start_page 35
container_title
container_volume 2095
creator François, Alexandre R. J.
Medioni, Gérard G.
description An increasing number of computer vision applications require online processing of data streams, preferably in real-time. This trend is fueled by the mainstream availability of low cost imaging devices, and the steady increase in computing power. To meet these requirements, applications should manipulate data streams in concurrent processing environments, taking into consideration scheduling, planning and synchronization issues. Those can be solved in specialized systems using ad hoc designs and implementations, that sacrifice flexibility and generality for performance. Instead, we propose a generic, extensible, modular software architecture. The cornerstone of this architecture is the Flow Scheduling Framework (FSF), an extensible set of classes that provide basic synchronization functionality and control mechanisms to develop datastream processing components. Applications are built in a data-flow programming model, as the specification of data streams flowing through processing nodes, where they can undergo various manipulations. We describe the details of the FSF data and processing model that supports stream synchronization in a concurrent processing framework. We demonstrate the power of our architecture for video processing with a real-time video stream segmentation application. We also show dramatic throughput improvement over sequential execution models with a port of the pyramidal Lukas-Kanade feature tracker demonstration application from the Intel Open Computer Vision library.
doi_str_mv 10.1007/3-540-48222-9_3
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1015646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6413338_43_44</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2263-5f37c47aaff8b45ae261a8881f709b40ecd237039b535022a7bebc33ac519c6b3</originalsourceid><addsrcrecordid>eNotUEtPAjEQrs-AyNnrHryutp12t72YEOIrwWgUvTazpQurC8V2ifHfW4G5TL75Hsl8hFwwesUoLa8hl4LmQnHOc23ggJxBOmyxPiR9VjCWAwh9RIa6VFuOcyXhmPQp0OQpBZySnlBaCclVjwxj_KRpgBWa6z65GWVPfrZpMWRvvu5-MLhsFOyi6ZztNgnUPmSvDtt82ixd9tHMnM9egrcuxmY1PycnNbbRDfd7QN7vbqfjh3zyfP84Hk1yy3mRnqihtKJErGtVCYmOFwyVUqwuqa4EdXbGoaSgKwmSco5l5SoLgFYybYsKBuRyl7vGaLGtA65sE806NEsMv4ZRJgtRJFm-k8XErOYumMr7r5h481-nAZMaMtv6TKoz6fk-NvjvjYudcf8G61ZdwNYucN25EE0hGAAoI8AIAX88fnDh</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6413338_43_44</pqid></control><display><type>book_chapter</type><title>A Modular Software Architecture for Real-Time Video Processing</title><source>Springer Books</source><creator>François, Alexandre R. J. ; Medioni, Gérard G.</creator><contributor>Schiele, Bernt ; Sagerer, Gerhard ; Sagerer, Gerhard ; Schiele, Bernt</contributor><creatorcontrib>François, Alexandre R. J. ; Medioni, Gérard G. ; Schiele, Bernt ; Sagerer, Gerhard ; Sagerer, Gerhard ; Schiele, Bernt</creatorcontrib><description>An increasing number of computer vision applications require online processing of data streams, preferably in real-time. This trend is fueled by the mainstream availability of low cost imaging devices, and the steady increase in computing power. To meet these requirements, applications should manipulate data streams in concurrent processing environments, taking into consideration scheduling, planning and synchronization issues. Those can be solved in specialized systems using ad hoc designs and implementations, that sacrifice flexibility and generality for performance. Instead, we propose a generic, extensible, modular software architecture. The cornerstone of this architecture is the Flow Scheduling Framework (FSF), an extensible set of classes that provide basic synchronization functionality and control mechanisms to develop datastream processing components. Applications are built in a data-flow programming model, as the specification of data streams flowing through processing nodes, where they can undergo various manipulations. We describe the details of the FSF data and processing model that supports stream synchronization in a concurrent processing framework. We demonstrate the power of our architecture for video processing with a real-time video stream segmentation application. We also show dramatic throughput improvement over sequential execution models with a port of the pyramidal Lukas-Kanade feature tracker demonstration application from the Intel Open Computer Vision library.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540422853</identifier><identifier>ISBN: 3540422854</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540482229</identifier><identifier>EISBN: 9783540482222</identifier><identifier>DOI: 10.1007/3-540-48222-9_3</identifier><identifier>OCLC: 48984528</identifier><identifier>LCCallNum: TA1634</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data Stream ; Exact sciences and technology ; Node Type ; Pattern recognition. Digital image processing. Computational geometry ; Processing Node ; Software ; Software engineering ; Stream Flow ; Video Processing</subject><ispartof>Computer Vision Systems, 2001, Vol.2095, p.35-49</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2263-5f37c47aaff8b45ae261a8881f709b40ecd237039b535022a7bebc33ac519c6b3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6413338-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-48222-9_3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-48222-9_3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1015646$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Schiele, Bernt</contributor><contributor>Sagerer, Gerhard</contributor><contributor>Sagerer, Gerhard</contributor><contributor>Schiele, Bernt</contributor><creatorcontrib>François, Alexandre R. J.</creatorcontrib><creatorcontrib>Medioni, Gérard G.</creatorcontrib><title>A Modular Software Architecture for Real-Time Video Processing</title><title>Computer Vision Systems</title><description>An increasing number of computer vision applications require online processing of data streams, preferably in real-time. This trend is fueled by the mainstream availability of low cost imaging devices, and the steady increase in computing power. To meet these requirements, applications should manipulate data streams in concurrent processing environments, taking into consideration scheduling, planning and synchronization issues. Those can be solved in specialized systems using ad hoc designs and implementations, that sacrifice flexibility and generality for performance. Instead, we propose a generic, extensible, modular software architecture. The cornerstone of this architecture is the Flow Scheduling Framework (FSF), an extensible set of classes that provide basic synchronization functionality and control mechanisms to develop datastream processing components. Applications are built in a data-flow programming model, as the specification of data streams flowing through processing nodes, where they can undergo various manipulations. We describe the details of the FSF data and processing model that supports stream synchronization in a concurrent processing framework. We demonstrate the power of our architecture for video processing with a real-time video stream segmentation application. We also show dramatic throughput improvement over sequential execution models with a port of the pyramidal Lukas-Kanade feature tracker demonstration application from the Intel Open Computer Vision library.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data Stream</subject><subject>Exact sciences and technology</subject><subject>Node Type</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Processing Node</subject><subject>Software</subject><subject>Software engineering</subject><subject>Stream Flow</subject><subject>Video Processing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540422853</isbn><isbn>3540422854</isbn><isbn>3540482229</isbn><isbn>9783540482222</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUEtPAjEQrs-AyNnrHryutp12t72YEOIrwWgUvTazpQurC8V2ifHfW4G5TL75Hsl8hFwwesUoLa8hl4LmQnHOc23ggJxBOmyxPiR9VjCWAwh9RIa6VFuOcyXhmPQp0OQpBZySnlBaCclVjwxj_KRpgBWa6z65GWVPfrZpMWRvvu5-MLhsFOyi6ZztNgnUPmSvDtt82ixd9tHMnM9egrcuxmY1PycnNbbRDfd7QN7vbqfjh3zyfP84Hk1yy3mRnqihtKJErGtVCYmOFwyVUqwuqa4EdXbGoaSgKwmSco5l5SoLgFYybYsKBuRyl7vGaLGtA65sE806NEsMv4ZRJgtRJFm-k8XErOYumMr7r5h481-nAZMaMtv6TKoz6fk-NvjvjYudcf8G61ZdwNYucN25EE0hGAAoI8AIAX88fnDh</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>François, Alexandre R. J.</creator><creator>Medioni, Gérard G.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>A Modular Software Architecture for Real-Time Video Processing</title><author>François, Alexandre R. J. ; Medioni, Gérard G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2263-5f37c47aaff8b45ae261a8881f709b40ecd237039b535022a7bebc33ac519c6b3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data Stream</topic><topic>Exact sciences and technology</topic><topic>Node Type</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Processing Node</topic><topic>Software</topic><topic>Software engineering</topic><topic>Stream Flow</topic><topic>Video Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>François, Alexandre R. J.</creatorcontrib><creatorcontrib>Medioni, Gérard G.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>François, Alexandre R. J.</au><au>Medioni, Gérard G.</au><au>Schiele, Bernt</au><au>Sagerer, Gerhard</au><au>Sagerer, Gerhard</au><au>Schiele, Bernt</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Modular Software Architecture for Real-Time Video Processing</atitle><btitle>Computer Vision Systems</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2095</volume><spage>35</spage><epage>49</epage><pages>35-49</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540422853</isbn><isbn>3540422854</isbn><eisbn>3540482229</eisbn><eisbn>9783540482222</eisbn><abstract>An increasing number of computer vision applications require online processing of data streams, preferably in real-time. This trend is fueled by the mainstream availability of low cost imaging devices, and the steady increase in computing power. To meet these requirements, applications should manipulate data streams in concurrent processing environments, taking into consideration scheduling, planning and synchronization issues. Those can be solved in specialized systems using ad hoc designs and implementations, that sacrifice flexibility and generality for performance. Instead, we propose a generic, extensible, modular software architecture. The cornerstone of this architecture is the Flow Scheduling Framework (FSF), an extensible set of classes that provide basic synchronization functionality and control mechanisms to develop datastream processing components. Applications are built in a data-flow programming model, as the specification of data streams flowing through processing nodes, where they can undergo various manipulations. We describe the details of the FSF data and processing model that supports stream synchronization in a concurrent processing framework. We demonstrate the power of our architecture for video processing with a real-time video stream segmentation application. We also show dramatic throughput improvement over sequential execution models with a port of the pyramidal Lukas-Kanade feature tracker demonstration application from the Intel Open Computer Vision library.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-48222-9_3</doi><oclcid>48984528</oclcid><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Vision Systems, 2001, Vol.2095, p.35-49
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1015646
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Data Stream
Exact sciences and technology
Node Type
Pattern recognition. Digital image processing. Computational geometry
Processing Node
Software
Software engineering
Stream Flow
Video Processing
title A Modular Software Architecture for Real-Time Video Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Modular%20Software%20Architecture%20for%20Real-Time%20Video%20Processing&rft.btitle=Computer%20Vision%20Systems&rft.au=Fran%C3%A7ois,%20Alexandre%20R.%20J.&rft.date=2001&rft.volume=2095&rft.spage=35&rft.epage=49&rft.pages=35-49&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540422853&rft.isbn_list=3540422854&rft_id=info:doi/10.1007/3-540-48222-9_3&rft_dat=%3Cproquest_pasca%3EEBC6413338_43_44%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540482229&rft.eisbn_list=9783540482222&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6413338_43_44&rft_id=info:pmid/&rfr_iscdi=true