A Modular Software Architecture for Real-Time Video Processing

An increasing number of computer vision applications require online processing of data streams, preferably in real-time. This trend is fueled by the mainstream availability of low cost imaging devices, and the steady increase in computing power. To meet these requirements, applications should manipu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: François, Alexandre R. J., Medioni, Gérard G.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An increasing number of computer vision applications require online processing of data streams, preferably in real-time. This trend is fueled by the mainstream availability of low cost imaging devices, and the steady increase in computing power. To meet these requirements, applications should manipulate data streams in concurrent processing environments, taking into consideration scheduling, planning and synchronization issues. Those can be solved in specialized systems using ad hoc designs and implementations, that sacrifice flexibility and generality for performance. Instead, we propose a generic, extensible, modular software architecture. The cornerstone of this architecture is the Flow Scheduling Framework (FSF), an extensible set of classes that provide basic synchronization functionality and control mechanisms to develop datastream processing components. Applications are built in a data-flow programming model, as the specification of data streams flowing through processing nodes, where they can undergo various manipulations. We describe the details of the FSF data and processing model that supports stream synchronization in a concurrent processing framework. We demonstrate the power of our architecture for video processing with a real-time video stream segmentation application. We also show dramatic throughput improvement over sequential execution models with a port of the pyramidal Lukas-Kanade feature tracker demonstration application from the Intel Open Computer Vision library.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-48222-9_3