Computing a Required Absolute Precision from a Stream of Linear Fractional Transformations

A real number can be represented as a sequence of nested, closed intervals whose lengthes tend to zero. In the LFT approach to Exact Real Arithmetic the sequence of intervals is generated by a sequence of one-dimensional linear fractional transformations (1-LFTs) applied to a base interval, [9,13,11...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: KRZNARIC, Marko
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A real number can be represented as a sequence of nested, closed intervals whose lengthes tend to zero. In the LFT approach to Exact Real Arithmetic the sequence of intervals is generated by a sequence of one-dimensional linear fractional transformations (1-LFTs) applied to a base interval, [9,13,11,4,12,7].
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-45335-0_11