Computing a Required Absolute Precision from a Stream of Linear Fractional Transformations
A real number can be represented as a sequence of nested, closed intervals whose lengthes tend to zero. In the LFT approach to Exact Real Arithmetic the sequence of intervals is generated by a sequence of one-dimensional linear fractional transformations (1-LFTs) applied to a base interval, [9,13,11...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A real number can be represented as a sequence of nested, closed intervals whose lengthes tend to zero. In the LFT approach to Exact Real Arithmetic the sequence of intervals is generated by a sequence of one-dimensional linear fractional transformations (1-LFTs) applied to a base interval, [9,13,11,4,12,7]. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-45335-0_11 |