GL(2, ) STRUCTURES, G 2 GEOMETRY AND TWISTOR THEORY

A GL(2, ) structure on an (n + 1)-dimensional manifold is a smooth point-wise identification of tangent vectors with polynomials in two variables homogeneous of degree n. This, for even n = 2k, defines a conformal structure of signature (k, k + 1) by specifying the null vectors to be the polynomials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of mathematics 2012-03, Vol.63 (1), p.101-132
Hauptverfasser: Dunajski, Maciej, Godli ski, Micha
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 1
container_start_page 101
container_title Quarterly journal of mathematics
container_volume 63
creator Dunajski, Maciej
Godli ski, Micha
description A GL(2, ) structure on an (n + 1)-dimensional manifold is a smooth point-wise identification of tangent vectors with polynomials in two variables homogeneous of degree n. This, for even n = 2k, defines a conformal structure of signature (k, k + 1) by specifying the null vectors to be the polynomials with vanishing quadratic invariant. We focus on the case n = 6 and show that the resulting conformal structure in seven dimensions is compatible with a conformal G 2 structure or its non-compact analogue. If a GL(2, ) structure arises on a moduli space of rational curves on a surface with self-intersection number 6, then certain components of the intrinsic torsion of the G 2 structure vanish. We give examples of simple seventh-order ordinary differential equations whose solution curves are rational and find the corresponding G 2 structures. In particular we show that Bryant's weak G 2 holonomy metric on the homology seven-sphere SO(5)/SO(3) is the unique weak G 2 metric arising from a rational curve.
doi_str_mv 10.1093/qmath/haq032
format Article
fullrecord <record><control><sourceid>oup</sourceid><recordid>TN_cdi_oup_primary_10_1093_qmath_haq032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/qmath/haq032</oup_id><sourcerecordid>10.1093/qmath/haq032</sourcerecordid><originalsourceid>FETCH-LOGICAL-o102t-9e80ad378bd22c5af7741ad1b23fd3589267d03cf4649359aa1b79f3104d23953</originalsourceid><addsrcrecordid>eNotz89LwzAYxvEgCtbpzT8gNxVW9yZvmjTH0cVuUC2kKbJTSZeVKY796Dz436vbTs_ty_Mh5J7BMwONo93aH1ajld8B8gsSMSFFjKlQlyQCQIwTCfKa3PT9JwCTIlURwbx45EP6RCtn68zV1lRDmlNOc1O-GmfndPw2oe59VrnSUjc1pZ3fkqvOf_XLu_MOSP1iXDaNizKfZeMi3jDgh1gvU_ABVdoGzheJ75QSzAfWcuwCJqnmUgXARfd3U2OivWet0h0yEIGjTnBAHk7dzfe22e4_1n7_0zBo_q3N0dqcrPgLNutCPw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GL(2, ) STRUCTURES, G 2 GEOMETRY AND TWISTOR THEORY</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Dunajski, Maciej ; Godli ski, Micha</creator><creatorcontrib>Dunajski, Maciej ; Godli ski, Micha</creatorcontrib><description>A GL(2, ) structure on an (n + 1)-dimensional manifold is a smooth point-wise identification of tangent vectors with polynomials in two variables homogeneous of degree n. This, for even n = 2k, defines a conformal structure of signature (k, k + 1) by specifying the null vectors to be the polynomials with vanishing quadratic invariant. We focus on the case n = 6 and show that the resulting conformal structure in seven dimensions is compatible with a conformal G 2 structure or its non-compact analogue. If a GL(2, ) structure arises on a moduli space of rational curves on a surface with self-intersection number 6, then certain components of the intrinsic torsion of the G 2 structure vanish. We give examples of simple seventh-order ordinary differential equations whose solution curves are rational and find the corresponding G 2 structures. In particular we show that Bryant's weak G 2 holonomy metric on the homology seven-sphere SO(5)/SO(3) is the unique weak G 2 metric arising from a rational curve.</description><identifier>ISSN: 0033-5606</identifier><identifier>EISSN: 1464-3847</identifier><identifier>DOI: 10.1093/qmath/haq032</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Quarterly journal of mathematics, 2012-03, Vol.63 (1), p.101-132</ispartof><rights>2010. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids></links><search><creatorcontrib>Dunajski, Maciej</creatorcontrib><creatorcontrib>Godli ski, Micha</creatorcontrib><title>GL(2, ) STRUCTURES, G 2 GEOMETRY AND TWISTOR THEORY</title><title>Quarterly journal of mathematics</title><description>A GL(2, ) structure on an (n + 1)-dimensional manifold is a smooth point-wise identification of tangent vectors with polynomials in two variables homogeneous of degree n. This, for even n = 2k, defines a conformal structure of signature (k, k + 1) by specifying the null vectors to be the polynomials with vanishing quadratic invariant. We focus on the case n = 6 and show that the resulting conformal structure in seven dimensions is compatible with a conformal G 2 structure or its non-compact analogue. If a GL(2, ) structure arises on a moduli space of rational curves on a surface with self-intersection number 6, then certain components of the intrinsic torsion of the G 2 structure vanish. We give examples of simple seventh-order ordinary differential equations whose solution curves are rational and find the corresponding G 2 structures. In particular we show that Bryant's weak G 2 holonomy metric on the homology seven-sphere SO(5)/SO(3) is the unique weak G 2 metric arising from a rational curve.</description><issn>0033-5606</issn><issn>1464-3847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotz89LwzAYxvEgCtbpzT8gNxVW9yZvmjTH0cVuUC2kKbJTSZeVKY796Dz436vbTs_ty_Mh5J7BMwONo93aH1ajld8B8gsSMSFFjKlQlyQCQIwTCfKa3PT9JwCTIlURwbx45EP6RCtn68zV1lRDmlNOc1O-GmfndPw2oe59VrnSUjc1pZ3fkqvOf_XLu_MOSP1iXDaNizKfZeMi3jDgh1gvU_ABVdoGzheJ75QSzAfWcuwCJqnmUgXARfd3U2OivWet0h0yEIGjTnBAHk7dzfe22e4_1n7_0zBo_q3N0dqcrPgLNutCPw</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Dunajski, Maciej</creator><creator>Godli ski, Micha</creator><general>Oxford University Press</general><scope/></search><sort><creationdate>201203</creationdate><title>GL(2, ) STRUCTURES, G 2 GEOMETRY AND TWISTOR THEORY</title><author>Dunajski, Maciej ; Godli ski, Micha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o102t-9e80ad378bd22c5af7741ad1b23fd3589267d03cf4649359aa1b79f3104d23953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunajski, Maciej</creatorcontrib><creatorcontrib>Godli ski, Micha</creatorcontrib><jtitle>Quarterly journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunajski, Maciej</au><au>Godli ski, Micha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GL(2, ) STRUCTURES, G 2 GEOMETRY AND TWISTOR THEORY</atitle><jtitle>Quarterly journal of mathematics</jtitle><date>2012-03</date><risdate>2012</risdate><volume>63</volume><issue>1</issue><spage>101</spage><epage>132</epage><pages>101-132</pages><issn>0033-5606</issn><eissn>1464-3847</eissn><abstract>A GL(2, ) structure on an (n + 1)-dimensional manifold is a smooth point-wise identification of tangent vectors with polynomials in two variables homogeneous of degree n. This, for even n = 2k, defines a conformal structure of signature (k, k + 1) by specifying the null vectors to be the polynomials with vanishing quadratic invariant. We focus on the case n = 6 and show that the resulting conformal structure in seven dimensions is compatible with a conformal G 2 structure or its non-compact analogue. If a GL(2, ) structure arises on a moduli space of rational curves on a surface with self-intersection number 6, then certain components of the intrinsic torsion of the G 2 structure vanish. We give examples of simple seventh-order ordinary differential equations whose solution curves are rational and find the corresponding G 2 structures. In particular we show that Bryant's weak G 2 holonomy metric on the homology seven-sphere SO(5)/SO(3) is the unique weak G 2 metric arising from a rational curve.</abstract><pub>Oxford University Press</pub><doi>10.1093/qmath/haq032</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-5606
ispartof Quarterly journal of mathematics, 2012-03, Vol.63 (1), p.101-132
issn 0033-5606
1464-3847
language eng
recordid cdi_oup_primary_10_1093_qmath_haq032
source Oxford University Press Journals All Titles (1996-Current)
title GL(2, ) STRUCTURES, G 2 GEOMETRY AND TWISTOR THEORY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GL(2,%20)%20STRUCTURES,%20G%202%20GEOMETRY%20AND%20TWISTOR%20THEORY&rft.jtitle=Quarterly%20journal%20of%20mathematics&rft.au=Dunajski,%20Maciej&rft.date=2012-03&rft.volume=63&rft.issue=1&rft.spage=101&rft.epage=132&rft.pages=101-132&rft.issn=0033-5606&rft.eissn=1464-3847&rft_id=info:doi/10.1093/qmath/haq032&rft_dat=%3Coup%3E10.1093/qmath/haq032%3C/oup%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/qmath/haq032&rfr_iscdi=true