GL(2, ) STRUCTURES, G 2 GEOMETRY AND TWISTOR THEORY
A GL(2, ) structure on an (n + 1)-dimensional manifold is a smooth point-wise identification of tangent vectors with polynomials in two variables homogeneous of degree n. This, for even n = 2k, defines a conformal structure of signature (k, k + 1) by specifying the null vectors to be the polynomials...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of mathematics 2012-03, Vol.63 (1), p.101-132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A GL(2, ) structure on an (n + 1)-dimensional manifold is a smooth point-wise identification of tangent vectors with polynomials in two variables homogeneous of degree n. This, for even n = 2k, defines a conformal structure of signature (k, k + 1) by specifying the null vectors to be the polynomials with vanishing quadratic invariant. We focus on the case n = 6 and show that the resulting conformal structure in seven dimensions is compatible with a conformal G
2 structure or its non-compact analogue. If a GL(2, ) structure arises on a moduli space of rational curves on a surface with self-intersection number 6, then certain components of the intrinsic torsion of the G
2 structure vanish. We give examples of simple seventh-order ordinary differential equations whose solution curves are rational and find the corresponding G
2 structures. In particular we show that Bryant's weak G
2 holonomy metric on the homology seven-sphere SO(5)/SO(3) is the unique weak G
2 metric arising from a rational curve. |
---|---|
ISSN: | 0033-5606 1464-3847 |
DOI: | 10.1093/qmath/haq032 |