A Family of Riesz Distributions for Differential Forms on Euclidian Space
In this paper, we introduce a new family of operator-valued distributions on Euclidian space acting by convolution on differential forms. It provides a natural generalization of the important Riesz distributions acting on functions, where the corresponding operators are $(-\Delta )^{-\alpha /2}$, an...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2021-07, Vol.2021 (13), p.9746-9768 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce a new family of operator-valued distributions on Euclidian space acting by convolution on differential forms. It provides a natural generalization of the important Riesz distributions acting on functions, where the corresponding operators are $(-\Delta )^{-\alpha /2}$, and we develop basic analogous properties with respect to meromorphic continuation, residues, Fourier transforms, and relations to conformal geometry and representations of the conformal group. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnz391 |