A Family of Riesz Distributions for Differential Forms on Euclidian Space

In this paper, we introduce a new family of operator-valued distributions on Euclidian space acting by convolution on differential forms. It provides a natural generalization of the important Riesz distributions acting on functions, where the corresponding operators are $(-\Delta )^{-\alpha /2}$, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2021-07, Vol.2021 (13), p.9746-9768
Hauptverfasser: Fischmann, Matthias, Ørsted, Bent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a new family of operator-valued distributions on Euclidian space acting by convolution on differential forms. It provides a natural generalization of the important Riesz distributions acting on functions, where the corresponding operators are $(-\Delta )^{-\alpha /2}$, and we develop basic analogous properties with respect to meromorphic continuation, residues, Fourier transforms, and relations to conformal geometry and representations of the conformal group.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnz391