A Criterion for Splitting of a Projective Module in Terms of Its Generic Sections
Abstract Let $R$ be a smooth affine domain of dimension $d\geq 3$ over $\overline{{\mathbb{F}}}_p$ with $p\neq 2$. Let $P$ be a projective $R$-module of rank $d-1$ with trivial determinant. We prove that $P$ splits off a free summand of rank 1 if and only if $P$ surjects onto a complete intersection...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2021-07, Vol.2021 (13), p.10073-10099 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Let $R$ be a smooth affine domain of dimension $d\geq 3$ over $\overline{{\mathbb{F}}}_p$ with $p\neq 2$. Let $P$ be a projective $R$-module of rank $d-1$ with trivial determinant. We prove that $P$ splits off a free summand of rank 1 if and only if $P$ surjects onto a complete intersection ideal of height $d-1$. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnz102 |