Structural phase stability in group IV metals under static high pressure

In group IV metals (Ti, Zr, and Hf) room temperature compression leads to a martensitic transformation from a ductile {alpha} to a brittle {omega} phase. {alpha} {yields} {omega} phase boundary decreases to lower pressure at high temperature and can limit the use of group IV metals in industrial app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Velisavljevic, Nenad, Chesnut, Garry N, Dattelbaum, Dana M, Vohra, Yogesh K, Stemshorn, Andrew
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In group IV metals (Ti, Zr, and Hf) room temperature compression leads to a martensitic transformation from a ductile {alpha} to a brittle {omega} phase. {alpha} {yields} {omega} phase boundary decreases to lower pressure at high temperature and can limit the use of group IV metals in industrial applications. There is a large discrepancy in the transition pressure reported in literature, with some of the variation attributed to experimental conditions (i.e. hydrostatic vs. non-hydrostatic). Shear deformation in non-hydrostatic experiments drives {alpha} {yields} {omega} transition and decreases transition pressure. Impurities can also aid or suppress {alpha} {yields} {omega} transition. By performing x-ray diffraction experiments on samples in a diamond anvil cell we show that interstitial impurities, such as C, N, and O can obstruct {alpha} {yields} {omega} transition and stabilize {alpha} phase to higher pressure. We also show that reduction in grain size can also influence {alpha} {yields} {omega} phase boundary and help stabilize {alpha} phase to higher pressure under non-hydrostatic conditions.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.3295022