Assessment of Barotrauma from Rapid Decompression of Depth‐Acclimated Juvenile Chinook Salmon Bearing Radiotelemetry Transmitters
This study investigated the mortality of and injury to juvenile Chinook salmon Oncorhynchus tshawytscha exposed to simulated pressure changes associated with passage through a large Kaplan hydropower turbine. Mortality and injury varied depending on whether a fish was carrying a transmitter, the met...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Fisheries Society (1900) 2009-11, Vol.138 (6), p.1285-1301 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigated the mortality of and injury to juvenile Chinook salmon Oncorhynchus tshawytscha exposed to simulated pressure changes associated with passage through a large Kaplan hydropower turbine. Mortality and injury varied depending on whether a fish was carrying a transmitter, the method of transmitter implantation, the depth of acclimation, and the size of the fish. Juvenile Chinook salmon implanted with radio transmitters were more likely than those without to die or sustain injuries during simulated turbine passage. Gastric transmitter implantation resulted in higher rates of injury and mortality than surgical implantation. Mortality and injury increased with increasing pressure of acclimation. Injuries were more common in subyearling fish than in yearling fish. Gas emboli in the gills and internal hemorrhaging were the major causes of mortality. Rupture of the swim bladder and emphysema in the fins were also common. This research makes clear that the exposure of juvenile Chinook salmon bearing radiotelemetry transmitters to simulated turbine pressures with a nadir of 8–19 kPa can result in barotrauma, leading to immediate or delayed mortality. The study also identified sublethal barotrauma injuries that may increase susceptibility to predation. These findings have significant implications for many studies that use telemetry devices to estimate the survival and behavior of juvenile salmon as they pass through large Kaplan turbines typical of those within the Columbia River hydropower system. Our results indicate that estimates of turbine passage survival for juvenile Chinook salmon obtained with radiotelemetry devices may be negatively biased. |
---|---|
ISSN: | 0002-8487 1548-8659 |
DOI: | 10.1577/T08-122.1 |