Half-Heusler compounds as a new class of three-dimensional topological insulators
Using first-principles calculations within density functional theory, we explore the feasibility of converting ternary half-Heusler compounds into a new class of three-dimensional topological insulators (3DTI). We demonstrate that the electronic structure of unstrained LaPtBi as a prototype system e...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2010-08, Vol.105 (9), p.096404-096404, Article 096404 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using first-principles calculations within density functional theory, we explore the feasibility of converting ternary half-Heusler compounds into a new class of three-dimensional topological insulators (3DTI). We demonstrate that the electronic structure of unstrained LaPtBi as a prototype system exhibits a distinct band-inversion feature. The 3DTI phase is realized by applying a uniaxial strain along the [001] direction, which opens a band gap while preserving the inverted band order. A definitive proof of the strained LaPtBi as a 3DTI is provided by directly calculating the topological Z2 invariants in systems without inversion symmetry. We discuss the implications of the present study to other half-Heusler compounds as 3DTI, which, together with the magnetic and superconducting properties of these materials, may provide a rich platform for novel quantum phenomena. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.105.096404 |