Partial and complete reduction of O2 by hydrogen on transition metal surfaces
The metal-catalyzed reduction of di-oxygen (O{sub 2}) by hydrogen is at the heart of direct synthesis of hydrogen peroxide (HOOH) and power generation by proton exchange membrane fuel cells. Despite its apparent simplicity, how the reaction proceeds on different metals is not yet well understood. We...
Gespeichert in:
Veröffentlicht in: | Surface science 2010-09, Vol.604 (19-20), p.1565-1575 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The metal-catalyzed reduction of di-oxygen (O{sub 2}) by hydrogen is at the heart of direct synthesis of hydrogen peroxide (HOOH) and power generation by proton exchange membrane fuel cells. Despite its apparent simplicity, how the reaction proceeds on different metals is not yet well understood. We present a systematic study of O{sub 2} reduction on the (111) facets of eight transition metals (Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) based on periodic density functional theory (DFT-GGA) calculations. Analysis of ten surface elementary reaction steps suggests three selectivity regimes as a function of the binding energy of atomic oxygen (BEO), delineated by the opposite demands to catalyze O-O bond scission and O-H bond formation: The dissociative adsorption of O{sub 2} prevails on Ni, Rh, Ir, and Cu; the complete reduction to water via associative (peroxyl, peroxide, and aquoxyl) mechanisms prevails on Pd, Pt, and Ag; and HOOH formation prevails on Au. The reducing power of hydrogen is decreased electrochemically by increasing the electrode potential. This hinders the hydrogenation of oxygen species and shifts the optimal selectivity for water to less reactive metals. Our results point to the important role of the intrinsic reactivity of metals in the selectivity of O{sub 2} reduction, provide a unified basis for understanding the metal-catalyzed reduction of O{sub 2} to H{sub 2}O and HOOH, and offer useful insights for identifying new catalysts for desired oxygen reduction products. |
---|---|
ISSN: | 0039-6028 1879-2758 |
DOI: | 10.1016/j.susc.2010.05.026 |