Base-Promoted Ammonia Borane Hydrogen-Release

The strong non-nucleophilic base bis(dimethylamino)naphthalene (Proton Sponge, PS) has been found to promote the rate and extent of H2-release from ammonia borane (AB) either in the solid state or in ionic-liquid and tetraglyme solutions. For example, AB reactions in 1-butyl-3-methylimidazolium chlo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2009-10, Vol.131 (39), p.14101-14110
Hauptverfasser: Himmelberger, Daniel W, Yoon, Chang Won, Bluhm, Martin E, Carroll, Patrick J, Sneddon, Larry G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The strong non-nucleophilic base bis(dimethylamino)naphthalene (Proton Sponge, PS) has been found to promote the rate and extent of H2-release from ammonia borane (AB) either in the solid state or in ionic-liquid and tetraglyme solutions. For example, AB reactions in 1-butyl-3-methylimidazolium chloride (bmimCl) containing 5.3 mol % PS released 2 equiv of H2 in 171 min at 85 °C and only 9 min at 110 °C, whereas comparable reactions without PS required 316 min at 85 °C and 20 min at 110 °C. Ionic-liquid solvents proved more favorable than tetraglyme since they reduced the formation of undesirable products such as borazine. Solid-state and solution 11B NMR studies of PS-promoted reactions in progress support a reaction pathway involving initial AB deprotonation to form the H3BNH2 − anion. This anion can then initiate AB dehydropolymerization to form branched-chain polyaminoborane polymers. Subsequent chain-branching and dehydrogenation reactions lead ultimately to a cross-linked polyborazylene-type product. AB dehydrogenation by lithium and potassium triethylborohydride was found to produce the stabilized Et3BNH2BH3 − anion, with the crystallographically determined structure of the [Et3BNH2BH3]−K+·18-crown-6 complex showing that, following AB nitrogen-deprotonation by the triethylborohydride, the Lewis-acidic triethylborane group coordinated at the nitrogen. Model studies of the reactions of [Et3BNH2BH3]−Li+ with AB show evidence of chain-growth, providing additional support for a PS-promoted AB anionic dehydropolymerization H2-release process.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja905015x