Magnetic and structural properties of FePt-FeRh exchange spring films for thermally assisted magnetic recording media
Recently a novel media structure for thermally assisted magnetic recording was proposed consisting of a layer of FePt exchange coupled to a FeRh layer. The FePt forms a high magnetocrystalline anisotropy, high coercivity ferromagnetic layer. The FeRh layer is antiferromagnetic at room temperature, b...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2004-07, Vol.40 (4), p.2537-2542 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently a novel media structure for thermally assisted magnetic recording was proposed consisting of a layer of FePt exchange coupled to a FeRh layer. The FePt forms a high magnetocrystalline anisotropy, high coercivity ferromagnetic layer. The FeRh layer is antiferromagnetic at room temperature, but upon heating above a transition temperature becomes ferromagnetic with a large magnetic moment and low magnetocrystalline anisotropy. The coupled ferromagnetic FePt and FeRh layers form an exchange-spring system significantly lowering the coercive field of the composite system compared to a single layer of FePt. This feature opens intriguing possibilities for media applications for thermally assisted magnetic recording where the ferromagnetic phase of FeRh is exploited to help write the media while the low-temperature antiferromagnetic phase supports the long-term stability. Here temperature-dependent structural and magnetic measurements of undoped and doped FeRh single layer and FePt-FeRh bilayer films are presented and the promises and challenges of the exchange spring media structure are discussed. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2004.829325 |