The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions

Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated + annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2009-08, Vol.393 (1), p.12-21
Hauptverfasser: Cockeram, B.V., Smith, R.W., Byun, T.S., Snead, L.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 12
container_title Journal of nuclear materials
container_volume 393
creator Cockeram, B.V.
Smith, R.W.
Byun, T.S.
Snead, L.L.
description Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated + annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at nominally 300 °C and 600 °C to neutron fluence levels that range from 10.5 to 246 × 10 24 n/m 2 ( E > 0.1 MeV) resulted in relatively large increases in hardness (77–109%), while small increases in hardness (
doi_str_mv 10.1016/j.jnucmat.2009.04.025
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_974213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311509006011</els_id><sourcerecordid>S0022311509006011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-5b34d06c3209c6809b860e3347f4160572da234650ec6550bf63fdb3c8a8419f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWB8_QYgLd8548-zMSkp9QsWFdeMmZJKMzdBmSjIK_ntTW926uhz4zr3nHoTOCJQEiLzqyi58mJUeSgpQl8BLoGIPjUg1ZgWvKOyjEQClBSNEHKKjlDoAEDWIEermC4fNQod3h33AQ1YLHW1wKeG-xbPpZHqJ529Pl1gHi59vXvCqX3411oWP1a9h3aeh8DFq6_Xg7A-pQ3B6mYXpg_WD70M6QQetXiZ3upvH6PXudj59KGbP94_TyawwTIqhEA3jFqRhFGojK6ibSoJjjI9bTiSIMbWaMi4FOCOFgKaVrLUNM5WuOKlbdozOt3tzLK-S8YMzixwjODOoeswpYZkRW8bEPqXoWrWOfqXjlyKgNqWqTu1KVZtSFXCVS82-i61vrZPRyzbqYHz6M1NS1ZIQyNz1lnP50U_v4iaHC8ZZHzcxbO__ufQNN-GN7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cockeram, B.V. ; Smith, R.W. ; Byun, T.S. ; Snead, L.L.</creator><creatorcontrib>Cockeram, B.V. ; Smith, R.W. ; Byun, T.S. ; Snead, L.L. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; High Temperature Materials Laboratory ; High Flux Isotope Reactor</creatorcontrib><description>Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated + annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at nominally 300 °C and 600 °C to neutron fluence levels that range from 10.5 to 246 × 10 24 n/m 2 ( E &gt; 0.1 MeV) resulted in relatively large increases in hardness (77–109%), while small increases in hardness (&lt;18%) were observed for irradiations at 870–1100 °C. The hardness recovery for ODS and LCAC irradiated at 300 °C and 600 °C were shown to be complete at 980 °C and ≈ 1100–1250 °C, respectively. Isothermal annealing at 700 °C was used to determine the activation energy for recovery of LCAC and ODS (3.70–4.88 eV ± 0.28–0.77 eV), which is comparable to values reported in the literature for molybdenum vacancy self-diffusion. This suggests that recovery of LCAC and ODS is controlled by the solid-state diffusion of vacancies in the bulk, and that the finer grain size and particle size ODS does not affect this mechanism. TZM exhibited slower recovery kinetics, which can be explained by the solute atoms (titanium and zirconium) inhibiting vacancy diffusion.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2009.04.025</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ACTIVATION ENERGY ; ANNEALING ; Applied sciences ; ATOMS ; CARBON ; Controled nuclear fusion plants ; DIFFUSION ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; GENERAL STUDIES OF NUCLEAR REACTORS ; GRAIN SIZE ; HARDNESS ; HFIR REACTOR ; Installations for energy generation and conversion: thermal and electrical energy ; KINETICS ; MOLYBDENUM ; NEUTRON FLUENCE ; Nuclear fuels ; OXIDES ; PARTICLE SIZE ; SOLUTES ; TITANIUM ; VACANCIES ; ZIRCONIUM</subject><ispartof>Journal of nuclear materials, 2009-08, Vol.393 (1), p.12-21</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-5b34d06c3209c6809b860e3347f4160572da234650ec6550bf63fdb3c8a8419f3</citedby><cites>FETCH-LOGICAL-c365t-5b34d06c3209c6809b860e3347f4160572da234650ec6550bf63fdb3c8a8419f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2009.04.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21896110$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/974213$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cockeram, B.V.</creatorcontrib><creatorcontrib>Smith, R.W.</creatorcontrib><creatorcontrib>Byun, T.S.</creatorcontrib><creatorcontrib>Snead, L.L.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>High Temperature Materials Laboratory</creatorcontrib><creatorcontrib>High Flux Isotope Reactor</creatorcontrib><title>The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions</title><title>Journal of nuclear materials</title><description>Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated + annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at nominally 300 °C and 600 °C to neutron fluence levels that range from 10.5 to 246 × 10 24 n/m 2 ( E &gt; 0.1 MeV) resulted in relatively large increases in hardness (77–109%), while small increases in hardness (&lt;18%) were observed for irradiations at 870–1100 °C. The hardness recovery for ODS and LCAC irradiated at 300 °C and 600 °C were shown to be complete at 980 °C and ≈ 1100–1250 °C, respectively. Isothermal annealing at 700 °C was used to determine the activation energy for recovery of LCAC and ODS (3.70–4.88 eV ± 0.28–0.77 eV), which is comparable to values reported in the literature for molybdenum vacancy self-diffusion. This suggests that recovery of LCAC and ODS is controlled by the solid-state diffusion of vacancies in the bulk, and that the finer grain size and particle size ODS does not affect this mechanism. TZM exhibited slower recovery kinetics, which can be explained by the solute atoms (titanium and zirconium) inhibiting vacancy diffusion.</description><subject>ACTIVATION ENERGY</subject><subject>ANNEALING</subject><subject>Applied sciences</subject><subject>ATOMS</subject><subject>CARBON</subject><subject>Controled nuclear fusion plants</subject><subject>DIFFUSION</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>GENERAL STUDIES OF NUCLEAR REACTORS</subject><subject>GRAIN SIZE</subject><subject>HARDNESS</subject><subject>HFIR REACTOR</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>KINETICS</subject><subject>MOLYBDENUM</subject><subject>NEUTRON FLUENCE</subject><subject>Nuclear fuels</subject><subject>OXIDES</subject><subject>PARTICLE SIZE</subject><subject>SOLUTES</subject><subject>TITANIUM</subject><subject>VACANCIES</subject><subject>ZIRCONIUM</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWB8_QYgLd8548-zMSkp9QsWFdeMmZJKMzdBmSjIK_ntTW926uhz4zr3nHoTOCJQEiLzqyi58mJUeSgpQl8BLoGIPjUg1ZgWvKOyjEQClBSNEHKKjlDoAEDWIEermC4fNQod3h33AQ1YLHW1wKeG-xbPpZHqJ529Pl1gHi59vXvCqX3411oWP1a9h3aeh8DFq6_Xg7A-pQ3B6mYXpg_WD70M6QQetXiZ3upvH6PXudj59KGbP94_TyawwTIqhEA3jFqRhFGojK6ibSoJjjI9bTiSIMbWaMi4FOCOFgKaVrLUNM5WuOKlbdozOt3tzLK-S8YMzixwjODOoeswpYZkRW8bEPqXoWrWOfqXjlyKgNqWqTu1KVZtSFXCVS82-i61vrZPRyzbqYHz6M1NS1ZIQyNz1lnP50U_v4iaHC8ZZHzcxbO__ufQNN-GN7w</recordid><startdate>20090815</startdate><enddate>20090815</enddate><creator>Cockeram, B.V.</creator><creator>Smith, R.W.</creator><creator>Byun, T.S.</creator><creator>Snead, L.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090815</creationdate><title>The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions</title><author>Cockeram, B.V. ; Smith, R.W. ; Byun, T.S. ; Snead, L.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-5b34d06c3209c6809b860e3347f4160572da234650ec6550bf63fdb3c8a8419f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ACTIVATION ENERGY</topic><topic>ANNEALING</topic><topic>Applied sciences</topic><topic>ATOMS</topic><topic>CARBON</topic><topic>Controled nuclear fusion plants</topic><topic>DIFFUSION</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>GENERAL STUDIES OF NUCLEAR REACTORS</topic><topic>GRAIN SIZE</topic><topic>HARDNESS</topic><topic>HFIR REACTOR</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>KINETICS</topic><topic>MOLYBDENUM</topic><topic>NEUTRON FLUENCE</topic><topic>Nuclear fuels</topic><topic>OXIDES</topic><topic>PARTICLE SIZE</topic><topic>SOLUTES</topic><topic>TITANIUM</topic><topic>VACANCIES</topic><topic>ZIRCONIUM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cockeram, B.V.</creatorcontrib><creatorcontrib>Smith, R.W.</creatorcontrib><creatorcontrib>Byun, T.S.</creatorcontrib><creatorcontrib>Snead, L.L.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>High Temperature Materials Laboratory</creatorcontrib><creatorcontrib>High Flux Isotope Reactor</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cockeram, B.V.</au><au>Smith, R.W.</au><au>Byun, T.S.</au><au>Snead, L.L.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>High Temperature Materials Laboratory</aucorp><aucorp>High Flux Isotope Reactor</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions</atitle><jtitle>Journal of nuclear materials</jtitle><date>2009-08-15</date><risdate>2009</risdate><volume>393</volume><issue>1</issue><spage>12</spage><epage>21</epage><pages>12-21</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated + annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at nominally 300 °C and 600 °C to neutron fluence levels that range from 10.5 to 246 × 10 24 n/m 2 ( E &gt; 0.1 MeV) resulted in relatively large increases in hardness (77–109%), while small increases in hardness (&lt;18%) were observed for irradiations at 870–1100 °C. The hardness recovery for ODS and LCAC irradiated at 300 °C and 600 °C were shown to be complete at 980 °C and ≈ 1100–1250 °C, respectively. Isothermal annealing at 700 °C was used to determine the activation energy for recovery of LCAC and ODS (3.70–4.88 eV ± 0.28–0.77 eV), which is comparable to values reported in the literature for molybdenum vacancy self-diffusion. This suggests that recovery of LCAC and ODS is controlled by the solid-state diffusion of vacancies in the bulk, and that the finer grain size and particle size ODS does not affect this mechanism. TZM exhibited slower recovery kinetics, which can be explained by the solute atoms (titanium and zirconium) inhibiting vacancy diffusion.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2009.04.025</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2009-08, Vol.393 (1), p.12-21
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_974213
source Elsevier ScienceDirect Journals Complete
subjects ACTIVATION ENERGY
ANNEALING
Applied sciences
ATOMS
CARBON
Controled nuclear fusion plants
DIFFUSION
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
GENERAL STUDIES OF NUCLEAR REACTORS
GRAIN SIZE
HARDNESS
HFIR REACTOR
Installations for energy generation and conversion: thermal and electrical energy
KINETICS
MOLYBDENUM
NEUTRON FLUENCE
Nuclear fuels
OXIDES
PARTICLE SIZE
SOLUTES
TITANIUM
VACANCIES
ZIRCONIUM
title The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20change%20in%20the%20hardness%20of%20LCAC,%20TZM,%20and%20ODS%20molybdenum%20in%20the%20post-irradiated%20and%20annealed%20conditions&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Cockeram,%20B.V.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2009-08-15&rft.volume=393&rft.issue=1&rft.spage=12&rft.epage=21&rft.pages=12-21&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2009.04.025&rft_dat=%3Celsevier_osti_%3ES0022311509006011%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022311509006011&rfr_iscdi=true