The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions
Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated + annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at no...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2009-08, Vol.393 (1), p.12-21 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1 |
container_start_page | 12 |
container_title | Journal of nuclear materials |
container_volume | 393 |
creator | Cockeram, B.V. Smith, R.W. Byun, T.S. Snead, L.L. |
description | Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated
+
annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at nominally 300
°C and 600
°C to neutron fluence levels that range from 10.5 to 246
×
10
24
n/m
2 (
E
>
0.1
MeV) resulted in relatively large increases in hardness (77–109%), while small increases in hardness ( |
doi_str_mv | 10.1016/j.jnucmat.2009.04.025 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_974213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311509006011</els_id><sourcerecordid>S0022311509006011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-5b34d06c3209c6809b860e3347f4160572da234650ec6550bf63fdb3c8a8419f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWB8_QYgLd8548-zMSkp9QsWFdeMmZJKMzdBmSjIK_ntTW926uhz4zr3nHoTOCJQEiLzqyi58mJUeSgpQl8BLoGIPjUg1ZgWvKOyjEQClBSNEHKKjlDoAEDWIEermC4fNQod3h33AQ1YLHW1wKeG-xbPpZHqJ529Pl1gHi59vXvCqX3411oWP1a9h3aeh8DFq6_Xg7A-pQ3B6mYXpg_WD70M6QQetXiZ3upvH6PXudj59KGbP94_TyawwTIqhEA3jFqRhFGojK6ibSoJjjI9bTiSIMbWaMi4FOCOFgKaVrLUNM5WuOKlbdozOt3tzLK-S8YMzixwjODOoeswpYZkRW8bEPqXoWrWOfqXjlyKgNqWqTu1KVZtSFXCVS82-i61vrZPRyzbqYHz6M1NS1ZIQyNz1lnP50U_v4iaHC8ZZHzcxbO__ufQNN-GN7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cockeram, B.V. ; Smith, R.W. ; Byun, T.S. ; Snead, L.L.</creator><creatorcontrib>Cockeram, B.V. ; Smith, R.W. ; Byun, T.S. ; Snead, L.L. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; High Temperature Materials Laboratory ; High Flux Isotope Reactor</creatorcontrib><description>Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated
+
annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at nominally 300
°C and 600
°C to neutron fluence levels that range from 10.5 to 246
×
10
24
n/m
2 (
E
>
0.1
MeV) resulted in relatively large increases in hardness (77–109%), while small increases in hardness (<18%) were observed for irradiations at 870–1100
°C. The hardness recovery for ODS and LCAC irradiated at 300
°C and 600
°C were shown to be complete at 980
°C and
≈
1100–1250
°C, respectively. Isothermal annealing at 700
°C was used to determine the activation energy for recovery of LCAC and ODS (3.70–4.88
eV
±
0.28–0.77
eV), which is comparable to values reported in the literature for molybdenum vacancy self-diffusion. This suggests that recovery of LCAC and ODS is controlled by the solid-state diffusion of vacancies in the bulk, and that the finer grain size and particle size ODS does not affect this mechanism. TZM exhibited slower recovery kinetics, which can be explained by the solute atoms (titanium and zirconium) inhibiting vacancy diffusion.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2009.04.025</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ACTIVATION ENERGY ; ANNEALING ; Applied sciences ; ATOMS ; CARBON ; Controled nuclear fusion plants ; DIFFUSION ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; GENERAL STUDIES OF NUCLEAR REACTORS ; GRAIN SIZE ; HARDNESS ; HFIR REACTOR ; Installations for energy generation and conversion: thermal and electrical energy ; KINETICS ; MOLYBDENUM ; NEUTRON FLUENCE ; Nuclear fuels ; OXIDES ; PARTICLE SIZE ; SOLUTES ; TITANIUM ; VACANCIES ; ZIRCONIUM</subject><ispartof>Journal of nuclear materials, 2009-08, Vol.393 (1), p.12-21</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-5b34d06c3209c6809b860e3347f4160572da234650ec6550bf63fdb3c8a8419f3</citedby><cites>FETCH-LOGICAL-c365t-5b34d06c3209c6809b860e3347f4160572da234650ec6550bf63fdb3c8a8419f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2009.04.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21896110$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/974213$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cockeram, B.V.</creatorcontrib><creatorcontrib>Smith, R.W.</creatorcontrib><creatorcontrib>Byun, T.S.</creatorcontrib><creatorcontrib>Snead, L.L.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>High Temperature Materials Laboratory</creatorcontrib><creatorcontrib>High Flux Isotope Reactor</creatorcontrib><title>The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions</title><title>Journal of nuclear materials</title><description>Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated
+
annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at nominally 300
°C and 600
°C to neutron fluence levels that range from 10.5 to 246
×
10
24
n/m
2 (
E
>
0.1
MeV) resulted in relatively large increases in hardness (77–109%), while small increases in hardness (<18%) were observed for irradiations at 870–1100
°C. The hardness recovery for ODS and LCAC irradiated at 300
°C and 600
°C were shown to be complete at 980
°C and
≈
1100–1250
°C, respectively. Isothermal annealing at 700
°C was used to determine the activation energy for recovery of LCAC and ODS (3.70–4.88
eV
±
0.28–0.77
eV), which is comparable to values reported in the literature for molybdenum vacancy self-diffusion. This suggests that recovery of LCAC and ODS is controlled by the solid-state diffusion of vacancies in the bulk, and that the finer grain size and particle size ODS does not affect this mechanism. TZM exhibited slower recovery kinetics, which can be explained by the solute atoms (titanium and zirconium) inhibiting vacancy diffusion.</description><subject>ACTIVATION ENERGY</subject><subject>ANNEALING</subject><subject>Applied sciences</subject><subject>ATOMS</subject><subject>CARBON</subject><subject>Controled nuclear fusion plants</subject><subject>DIFFUSION</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>GENERAL STUDIES OF NUCLEAR REACTORS</subject><subject>GRAIN SIZE</subject><subject>HARDNESS</subject><subject>HFIR REACTOR</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>KINETICS</subject><subject>MOLYBDENUM</subject><subject>NEUTRON FLUENCE</subject><subject>Nuclear fuels</subject><subject>OXIDES</subject><subject>PARTICLE SIZE</subject><subject>SOLUTES</subject><subject>TITANIUM</subject><subject>VACANCIES</subject><subject>ZIRCONIUM</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWB8_QYgLd8548-zMSkp9QsWFdeMmZJKMzdBmSjIK_ntTW926uhz4zr3nHoTOCJQEiLzqyi58mJUeSgpQl8BLoGIPjUg1ZgWvKOyjEQClBSNEHKKjlDoAEDWIEermC4fNQod3h33AQ1YLHW1wKeG-xbPpZHqJ529Pl1gHi59vXvCqX3411oWP1a9h3aeh8DFq6_Xg7A-pQ3B6mYXpg_WD70M6QQetXiZ3upvH6PXudj59KGbP94_TyawwTIqhEA3jFqRhFGojK6ibSoJjjI9bTiSIMbWaMi4FOCOFgKaVrLUNM5WuOKlbdozOt3tzLK-S8YMzixwjODOoeswpYZkRW8bEPqXoWrWOfqXjlyKgNqWqTu1KVZtSFXCVS82-i61vrZPRyzbqYHz6M1NS1ZIQyNz1lnP50U_v4iaHC8ZZHzcxbO__ufQNN-GN7w</recordid><startdate>20090815</startdate><enddate>20090815</enddate><creator>Cockeram, B.V.</creator><creator>Smith, R.W.</creator><creator>Byun, T.S.</creator><creator>Snead, L.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090815</creationdate><title>The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions</title><author>Cockeram, B.V. ; Smith, R.W. ; Byun, T.S. ; Snead, L.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-5b34d06c3209c6809b860e3347f4160572da234650ec6550bf63fdb3c8a8419f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ACTIVATION ENERGY</topic><topic>ANNEALING</topic><topic>Applied sciences</topic><topic>ATOMS</topic><topic>CARBON</topic><topic>Controled nuclear fusion plants</topic><topic>DIFFUSION</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>GENERAL STUDIES OF NUCLEAR REACTORS</topic><topic>GRAIN SIZE</topic><topic>HARDNESS</topic><topic>HFIR REACTOR</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>KINETICS</topic><topic>MOLYBDENUM</topic><topic>NEUTRON FLUENCE</topic><topic>Nuclear fuels</topic><topic>OXIDES</topic><topic>PARTICLE SIZE</topic><topic>SOLUTES</topic><topic>TITANIUM</topic><topic>VACANCIES</topic><topic>ZIRCONIUM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cockeram, B.V.</creatorcontrib><creatorcontrib>Smith, R.W.</creatorcontrib><creatorcontrib>Byun, T.S.</creatorcontrib><creatorcontrib>Snead, L.L.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>High Temperature Materials Laboratory</creatorcontrib><creatorcontrib>High Flux Isotope Reactor</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cockeram, B.V.</au><au>Smith, R.W.</au><au>Byun, T.S.</au><au>Snead, L.L.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>High Temperature Materials Laboratory</aucorp><aucorp>High Flux Isotope Reactor</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions</atitle><jtitle>Journal of nuclear materials</jtitle><date>2009-08-15</date><risdate>2009</risdate><volume>393</volume><issue>1</issue><spage>12</spage><epage>21</epage><pages>12-21</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated
+
annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at nominally 300
°C and 600
°C to neutron fluence levels that range from 10.5 to 246
×
10
24
n/m
2 (
E
>
0.1
MeV) resulted in relatively large increases in hardness (77–109%), while small increases in hardness (<18%) were observed for irradiations at 870–1100
°C. The hardness recovery for ODS and LCAC irradiated at 300
°C and 600
°C were shown to be complete at 980
°C and
≈
1100–1250
°C, respectively. Isothermal annealing at 700
°C was used to determine the activation energy for recovery of LCAC and ODS (3.70–4.88
eV
±
0.28–0.77
eV), which is comparable to values reported in the literature for molybdenum vacancy self-diffusion. This suggests that recovery of LCAC and ODS is controlled by the solid-state diffusion of vacancies in the bulk, and that the finer grain size and particle size ODS does not affect this mechanism. TZM exhibited slower recovery kinetics, which can be explained by the solute atoms (titanium and zirconium) inhibiting vacancy diffusion.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2009.04.025</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2009-08, Vol.393 (1), p.12-21 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_osti_scitechconnect_974213 |
source | Elsevier ScienceDirect Journals Complete |
subjects | ACTIVATION ENERGY ANNEALING Applied sciences ATOMS CARBON Controled nuclear fusion plants DIFFUSION Energy Energy. Thermal use of fuels Exact sciences and technology Fission nuclear power plants Fuels GENERAL STUDIES OF NUCLEAR REACTORS GRAIN SIZE HARDNESS HFIR REACTOR Installations for energy generation and conversion: thermal and electrical energy KINETICS MOLYBDENUM NEUTRON FLUENCE Nuclear fuels OXIDES PARTICLE SIZE SOLUTES TITANIUM VACANCIES ZIRCONIUM |
title | The change in the hardness of LCAC, TZM, and ODS molybdenum in the post-irradiated and annealed conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20change%20in%20the%20hardness%20of%20LCAC,%20TZM,%20and%20ODS%20molybdenum%20in%20the%20post-irradiated%20and%20annealed%20conditions&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Cockeram,%20B.V.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2009-08-15&rft.volume=393&rft.issue=1&rft.spage=12&rft.epage=21&rft.pages=12-21&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2009.04.025&rft_dat=%3Celsevier_osti_%3ES0022311509006011%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022311509006011&rfr_iscdi=true |