Numerical simulations of rubber networks at moderate to high tensile strains using a purely enthalpic force extension curve for individual chains
We report the results of numerical simulations of random, three-dimensional, periodic, tetrafunctional networks in response to a volume-preserving tensile strain. For the intranode force, we use a polynomial fit to a purely enthalpic ab initio force extension curve for extended polyisoprene. The sim...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2009-12, Vol.131 (22), p.224904-224904-5 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the results of numerical simulations of random, three-dimensional, periodic, tetrafunctional networks in response to a volume-preserving tensile strain. For the intranode force, we use a polynomial fit to a purely enthalpic
ab initio
force extension curve for extended polyisoprene. The simulation includes a relaxation procedure to minimize the node forces and enforces chain rupture when the extension of a network chain reaches the
ab initio
rupture strain. For the reasonable assumption that the distribution of network chain lengths is Gaussian, we find that the calculated snap-back velocity, temperature increase due to chain ruptures and predicted tensile stress versus strain curve are consistent with experimental data in the moderate to high extension regime. Our results show that a perfect tetrafunctional polyisoprene network is extremely robust, capable of supporting tensile stresses at least a factor of 10 greater than what is observed experimentally. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.3270166 |