The role of interlamellar chain entanglement in deformation-induced structure changes during uniaxial stretching of isotactic polypropylene

In-situ small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD) were carried out to investigate the deformation-induced structure changes of isotactic polypropylene (iPP) films during uniaxial stretching at varying temperatures (room temperature, 60°C and 160°C). From the WAXD d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2007-11, Vol.48 (23), p.6867-6880
Hauptverfasser: Zuo, Feng, Keum, Jong Kahk, Chen, Xuming, Hsiao, Benjamin S., Chen, Hongyu, Lai, Shih-Yaw, Wevers, Ronald, Li, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In-situ small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD) were carried out to investigate the deformation-induced structure changes of isotactic polypropylene (iPP) films during uniaxial stretching at varying temperatures (room temperature, 60°C and 160°C). From the WAXD data, mass fractions of amorphous, mesomorphic and crystal phases were estimated. Results indicate that at room temperature, the dominant structure change is the transformation of folded-chain crystal lamellae (monoclinic α-form) to oriented mesomorphic phase; while at high temperatures (>60°C); the dominant change is the transformation of amorphous phase to oriented folded-chain crystal lamellae. This behavior may be explained by the relative strength between the interlamellar entangled network of amorphous chains, which probably directly influence the tie chain distribution, and the surrounding crystal lamellae. It appears that during stretching at low temperatures, the interlamellar entanglement network is strong and can cause lamellar fragmentation, resulting in the formation of oriented mesomorphic phase. In contrast, during stretching at high temperatures, the chain disentanglement process dominates, resulting in the relaxation of restrained tie chains and the formation of more folded-chain lamellae.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2007.08.065